Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

Salvador Ventura Gonzalez
on behalf of the ATLAS Liquid Argon Calorimeter group

CHEP 2023

May 11, 2023
Outline

1 LAr and HL-LHC
2 LAr read-out electronics for the HL-LHC
3 On-detector Electronics
4 Off-detector Electronics
5 Summary
LAr and HL-LHC

Liquid Argon calorimeter
- Detector in the ATLAS experiment at CERN.
- Sampling calorimeter to measure energy deposited by electrons, photons and hadronic jets.
- Liquid Argon as active medium.
- ~182,500 readout channels.

High Luminosity LHC (HL-LHC)
- 5 to 7x the nominal luminosity. Up to 200 collisions per bunch crossing.
- Scheduled to begin in 2029.
LAr read-out electronics for HL-LHC

- Under the HL-LHC conditions, the read-out is required to:
 - Provide full LAr data for physics and necessary trigger improvements.
 - Withstand high radiation doses (max. TID \sim1-2 kGy).

- Upgrades in two phases:
 - Phase I (2016-2021): Trigger digitization and processing. Under final commissioning. See Marin Furukawa’s talk.
 - Phase II (2020-2026): Calibration, digitization and signal processing for energy reconstruction. Under development.

This presentation is focused on Phase-II upgrades.

Salvador Ventura Gonzalez
On-detector electronics, **Front End Board (FEB2)**

- Shape and digitize signals for both trigger and energy reconstruction.
- Handle the 16-bit dynamic range of calorimeters with two gain scales at 40 MHz.
- Serialize data for the LAr Signal Processor (LASP) board.
- Provide analog signal for Layer Sum Board (LSB).
- Main components: **ALFE V2** (Pre-amplifier/Shaper), **COLUTA V4** (ADC), and lpGBT (optical link).
- Must be stable for max irradiation of 1.4 kGy (TID), $4.1 \times 10^{13} \text{ } n_{eq}/\text{cm}^2$ (NIEL).
On-detector electronics, **Front End Board (FEB2)**

ALFE2: Preamplifier and Shaper

- Custom ASIC in 130 nm CMOS TSMC.
- 16-bit range, gain ratio \(\sim 23\).
- CR-RC\(^2\) shaping.
- Differential outputs for ADC and LSB.
- **Key specifications** such as INL, ENI and PSRR have been greatly exceeded in latest ALFE2 ASIC.
On-detector electronics, Front End Board (FEB2)

COLUTA V4 ADC
- 8 channels, 15-bit ADC, 40 MSPS
- 4th version of custom ASIC, 65 nm CMOS technology
- MDAC+SAR+DDPU architecture
- ENOB>11
- In pre-production phase, mass production automated testbenches under development.

Salvador Ventura Gonzalez
CHEP 2023
On-detector electronics, **Front End Board (FEB2)**

- **Slice testboard**
 - **ALFE, COLUTA** and optical links integrated.
 - 32 channels.
 - Control and readout on all channels tested.
 - Meet specifications for energy resolution (∼0.02%), and time resolution (∼50 ps for large pulses).

- **FEB2 v1.0 board**
 - 128 channels.
 - In PCB fabrication step.
On-detector electronics, **Calibration board**

- Injects calibrated physics-like pulses for read-out electronics calibration.
- Custom made chips:
 - **CLAROC**, high frequency switch to create a pulse similar to LAr detector output. Fabricated on HV SOI CMOS XFab 180nm technology.
 - **LADOC**, control current and DAC, TSMC 130 nm technology.
- **CLAROCV4** and **LADOCV2** under irradiation testing.
- **First version of calibration board CAD ongoing**.
Off-detector electronics, LAr Signal Processor (LASP)

- DSP on signals from FEB board to compute signal energy and time stamping.
- ATCA blade with 2 FPGAs + Smart Rear Transition Module (SRTM)
- Firmware development well under way.
- The off-detector electronics will receive in total 345 Tbps of data via 33000 links at 10 Gbps.
- ML techniques to be used in FPGAs to mitigate the consequences of pile-up increase while computing energy reconstruction (see Johann Voigt’s talk).
- LASP T1 and T2 demonstrator under testing.
Off-detector electronics, **LAr Timing System (LATS)**

- Trigger, Timing and Control (TTC) for the on-detector boards using lpGBT protocol.
- LATournett boards under development:
 - Central control FPGA
 - 12 matrix FPGAs for communication with FEB2.
- Firmware validated on Cyclone10 DevKit
- Power-up sequence verified with POWERv2 board.
- LpGBTv0 FMC board to test Cyclone10/lpGBT communication.
- **First LATournett PCB to be fabricated this year.**
Summary

▶ Several challenges imposed by the HL-LHC conditions are being addressed on the phase-II upgrades for the LAr detector.
▶ Radiation-tolerant custom made ASICs for on-detector electronics on their final versions after exhaustive testing campaigns.
▶ Work has been done to integrate the ASICs and other components (for both on-detector and off-detector electronics) in testboards to evaluate its performance, as well as for FW and SW development.
▶ First versions of on-detector (FEB, Calibration) and LATs boards to be fabricated soon.
▶ Introducing ML techniques for FPGAs to achieve trigger and processing goals.
▶ The upgrades are well under way and on track for the deployment in 2026.

Thanks!