ATLAS Trigger and Data Acquisition Upgrades for the High Luminosity LHC

Andrea Negri (University and INFN Pavia) on behalf of the ATLAS Collaboration

High Luminosity LHC

- Trigger & data acquisition challenge
 - Luminosity: $2 \mapsto 7.5 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - Pileup: 60 → 200
 - more time consuming
- ATLAS detector upgrade
 - new Tracker, new Timing Detector,

additional muon chambers, new Tile electronics, ...

Trigger DAQ upgrades

- Hardware based L0 trigger
 - \circ Data reduction: 40 MHz \rightarrow 1 MHz
 - 100 kHz in Run 3
 - Latency: 10 μs
 - 2.5 µs in Run 3
- Software based Event Filter
 - \circ Data reduction: 1 MHz \rightarrow 10 kHz
 - ~ 3 kHz in Run 3

Level-0 Trigger

- Data from calorimeters and muon detectors processed by dedicated trigger systems
 - L0Calo and L0Muon
- Global trigger runs full granularity offline-like reconstruction
 - @ 40 MHz
- Outputs sent to Central Trigger Processor to make L0 decision
 - Accepted events sent to Event Filter Ο

Level-0 Calo

• Feature EXtractors

- FPGA-based trigger boards optimized to trigger on different physics objects
- Feature EXtractors from Run 3
 - e(lectron)FEX, j(et)FEX, g(lobal)FEX
 - Hardware retained with upgraded firmware
 - Needed modifications currently being evaluated
- New forward Feature EXtractor (fFEX)
 - EM triggers for $|\eta| > 2.5$
 - Jet triggers for $|\eta| > 3.3$
 - Preliminary design being studied

Level-0 Muon

- Sector Logic
 - FPGA-based off-detector trigger logic
- Common hardware platform for Barrel and End-Cap
 - \circ 1st prototype tested \rightarrow
 - integration with on-detector board, from trigger chambers to Sector Logic
 - 2nd prototype design started

Level-0 Muon

- Trigger Processors
 - receive data from precision muon chambers and new small wheel muon chambers
 - interact with sector logic
- ATCA blades based on a common open source platform (Apollo*), that simplifies custom ATCA blade design
 - Service module for common services
 - Command module containing application specific elements
- * https://doi.org/10.48550/arXiv.1911.06452

Level-0 Muon

- Trigger Processors
 - receive data from precision muon chambers and new small wheel muon chambers
 - interact with sector logic
- Barrel: MDT precision chambers
 - v1 Command Module prototype under test
- End-Cap: New Small Wheel
 - schedule completely overhauled based on Run 3 experience

Level-0 Global Trigger

- Low-level analogue to Event Filter (EF)
 - HLT-like object-level and event-level reconstruction and analysis at 40 MHz
 - it will replace Run 3 topological processor
 - input: 50 Tb/s

- calo, muon, topological cluster, e/ɣ, т, jets, E^{miss} and other topological quantities
- Initial trigger menu will start from Run 3 signatures
- Additional triggers will be added during commissioning

L0 Global Trigger

- Farm of processing units
- Collect all data from a single event onto one FPGA
 - data aggregation and time multiplexing (MUX)
 - each Global Event Processors (GEP)

process one event

 demultiplexing step to collect GEP outputs and feed the Central Trigger Processor

L0 Global Trigger

- All modules based on common hardware ATCA platform
 - different functions implemented in firmware
- Prototypes
 - v2b available & tested
 - Based on Xilinx Virtex
 UltraScale+ 13P
 - v3 schematic review under way
 - w/ Versal Premium Xilinx VP1802

Central Trigger

- Central Trigger Processor
 - Final decision, prescales, vetos
 - \circ Number of L0 triggers: 512 \rightarrow 1024
 - Passed specification review
- CTP drives the Trigger, Timing and Control (TTC) system network
 - TTC distributed via the Local Trigger Interface (LTI) modules
 - Test Setup available
- Muon-CTP Interface (MUCTPI)
 - Re-use Run 3 HW with new FW

High Level Trigger

- Full event building at 1 MHz
 40 Tbps (5 TB/s)
- Heterogeneous commodity computing system
 - Offline-like algorithms
 - Under evaluation the possibility to use accelerators (GPUs or FPGAs)
- New DAQ infrastructure:
 - readout, dataflow, network, online software

Readout

- Front-End Link eXchange
 - PC-based gateway
 - hosting FPGA-based PCIe I/O cards
- FELIX interfaces
 - custom optical links to/from front-end
 - to/from commodity switched network
- Partially deployed in Run 3
 - for new or already upgraded detectors
- To be upgraded for Run 4
 - FLX-182 prototype

Readout

- FLX-182 prototype (FPGA/SoC)¹
 - Xilinx XCVM1802, PCIe gen4
 - 24 links up to 25 Gb/s + TTC interface
- Functionality tests successful
 - Hardware and firmware functions
 - Optical links and
 PCIe transmission
 - Integration w/ ATLAS
 Global Trigger

Dataflow and networking

- Dataflow provides full events (from readout) to EF and storage
- Completing a SW prototype
 - Based on Run 3 Dataflow
 - w/ new features and optimizations
 - Supporting expected rate: 12 kHz per rack (Assuming SW only architecture)
- Networking studies ongoing¹
 - Investigating deep-buffer switches
 - Simulation Models

¹ More details in Eukeni Pozo Astigarraga presentation, Tuesday 4:45 pm [link]

Dataflow and networking

- Persistent-storage buffer system
 - Complementary dataflow option
 w.r.t. Run 3 application-based design
 - Developed using DAOS
 - an open-source high-performance distributed storage system
 - Using Intel's high-end NVMes and persistent memories
- Prototype being tested
 - Viability depends on the evolution of storage technology

Online Software

- Responsible of configuring, controlling and monitoring the whole DAQ system
- Prototype EF farm orchestrator based on Kubernetes
 - Open-source orchestrator platform that automates deploying, managing and scaling containerized applications
 - Tests performed on Run 3 farm
- Started integration into the Run Control Software framework

Event Filter

- Commodity hardware:
 - CPU (7.8/11.4 MHS06 for Run 4/5) Ο
 - Possibly w/ accelerators: GPU, FPGA Ο
- Preliminary feasibility studies*
 - CPU showed x8 speed-up Ο
 - Use of GPU/FPGA looked promising Ο
- First demonstrators started
 - tracking, muon, calorimeter
- Technology decision about the use of accelerators in 2025

event

per

seconds

HS06

Event Filter

- Commodity hardware:
 - CPU (7.8/11.4 MHS06 for Run 4/5) Ο
 - Possibly w/ accelerators: GPU, FPGA Ο
- Preliminary feasibility studies*
 - CPU showed x8 speed-up Ο
 - Use of GPU/FPGA looked promising Ο
- First demonstrators started
 - tracking, muon, calorimeter Ο
- Technology decision about the use of accelerators in 2025

20

- Many ongoing FPGA & GPU studies
 - for track seeding, pattern recognition, track fitting, ambiguity removal
- Exploring use of High Level Synthesis ³/₄
 - Hough transforms with FPGAs¹
 and Graph Neural Network²

- Plan to use Acts Common Tracking Software
 - Experiment independent toolkit for track reconstruction
 - Support for accelerators and heterogeneous options
- ¹ More details in Abraham Kahn poster [link]
 ² More details in Sebastian Dittmeier presentation, Tuesday 2:30 pm [link]

aits

EF Calo and PPES

- Fraction of EF Calo: demonstrated topological Cell Clustering w/ GPUs
 - speed-up w.r.t CPU (1st version) Ο
 - ~3.5 for di-jets $<\mu>$ ~20
 - ~5.5 for tt at $<\mu>$ ~ 80
 - exploring FPGAs alternatives Ο
- Physics, Performance & Event Selection group coordinates
 - simulation, performance and trigger menu Ο development for Level-0 and EF algorithms

Events

10

 10^{-2}

Conclusion

- Upgrades based on a mix of commodity and custom solutions
 - Most projects already passed many reviews
 - Prototypes available for many projects
- Level-0 trigger
 - focus on integration with the many interfaces
- Readout, Dataflow, Network, online SW
 - testing prototypes: 1st FELIX prototype, dataflow prototypes, container-based prototype farm orchestration
- Event Filter
 - investigating accelerator options, technology decision in 2025

L0 Muon: MTD trigger processor

- Use MDT hits to improve the muon track candidate parameters, coming from the RPC and TGC Sector Logic (SL) boards.
 - Refined candidates are then sent back for the final trigger decision

Level 0

EF: FPGA Hough transform efficiency

• Single particles (muons/pions), barrel region, no pile-up,

Event Filter

- Regional tracking in Regions of Interest identified at Level-0
 - to verify the presence of high-pT tracks in single lepton triggers
 - to associate objects to a common vertex
- Run full-scan tracking at reduced rate
 o after regional tracking for jets & E_τ^{miss}
- Large radius tracking for exotics
 - focuses on tracks with high impact parameters like those resulting from the decays of Long Lived Particles

