The Particle Flow Algorithm in the Phase II Upgrade of the CMS Level-1 Trigger

8th May 2023 26th International Conference on Computing in High Energy & Nuclear Physics

Sioni Summers for the CMS Collaboration

Introduction

- CMS uses Particle Flow (PF) algorithm offline to best combine measurements from different sub-detectors to reconstruct final state particles
- Phase II Upgrade of CMS will equip Level 1 Trigger with significantly more precise inputs
 - Tracks of charged particles with p_T above 2 GeV
 - High Granularity Calorimeter in endcaps
 - More precision from barrel calorimeter to L1T
 - Muon systems
- Particle Flow will be brought to L1T for the first time
- Pile-Up Per Particle Identification (PUPPI) for mitigation of extremely high pileup environment

CMS Phase 2 Level 1 Trigger

- System will comprise 100s of FPGA boards reconstructing and reducing data in stages
- Correlator Layer 1 will use Serenity and APx ATCA boards with Xilinx Ultrascale+ FPGAs and multi-Tb/s data IO over optical fibres

3

CMS Phase 2 Level 1 Trigger

- System will comprise 100s of FPGA boards reconstructing and reducing data in stages
- Correlator Layer 1 will use Serenity and APx ATCA boards with Xilinx Ultrascale+ FPGAs and multi-Tb/s data IO over optical fibres

L1T Particle Flow Algorithm

- Link elements from different sub-detectors to reconstruct final state particles
 - Relies on precise reconstruction of charged particle tracks
- Match tracks to muons by ΔR in (η , ϕ) and p_T
 - Exclude matched tracks from next steps
- Match tracks to electromagnetic clusters by ΔR , sum p_T of tracks around cluster
 - Classify as photon, electron, or hadron (discard)
- Match electromagnetic clusters to hadronic clusters by ΔR
 - Subtract clustered EM energy from hadronic energy
- Match tracks to hadronic clusters by ΔR and p_T
 - Classify as charged or neutral hadron
- Produces: muons, electrons, photons, charged and neutral hadrons

L1T PUPPI Algorithm

- Particle Flow reconstructs all particles, including from pileup interactions
- Pile Up Per Particle Identification (PUPPI) isolates the particles originating from leading interaction
 - Using Primary Vertex Finding and particle weighting
 - Vertexing performed externally to Correlator (need all tracks in one board), sent over optical fibre
- Charged particles selected if track z coordinate compatible with found vertex
- Neutral particles are weighted according to local neighbourhood of primary-vertex-associated charged particles
 - Weight is a function of $\Sigma \ p_{T^2} \, / \, \Delta R^2$ over selected particles within $\Delta R < 0.4$
 - Outside tracker, all particles are used

- 6 FPGA boards per event split detector into macro-regions in (η, ϕ)
 - Barrel in 3 slices, Endcap in 2 slices, Forward in 1 board (2 slices)
 - Constrained by number of input fibres into each board
- To break the processing down further into manageable pieces, PF is performed regionally in (η, ϕ)
 - Regions sized roughly 0.5 x 0.5, chosen such that multiplicity of inputs is reasonable (around 20-30)
 - However, inputs from upstream systems do not arrive conveniently for PF regions
- Regionizer modules aggregate and shuffle around inputs objects into memories (Block RAMs) for later consumption by PF algorithm
- Significantly challenging part of the design
 - Need to maintain high internal data throughput to keep overall latency low
- Implemented in VHDL, using many small memories (BRAM, URAM)

CMS L1T PF PUPPI - Sioni Summers

Particle Flow & PUPPI Implementation

Global

Track Trigger

Vertexing

PF

Layer-1

- Within the PF Region objects are linked to tracks sequentially
 - Bit-vectors propagate linking information through algorithm
 - Tracks to muons, electromagnetic clusters to tracks, hadronic clusters to tracks
- Tracks Tk Ec Tk Ca Tk - FPGA optimized C++ with annotations for guided synthesis Linking Muons nizer HGCal - The major resource consumer of the module PUPP 0 eg **Ecal Barrel** PUPPI finishing region i 3x3 tower **Hcal Barrel** Clusters Particle - Up to 18 regions per board - depending on the macro region Correlator: Flow
- PF implemented using Xilinx High Level Synthesis (HLS) • Resource parallelism: compute all ΔR matches simultaneously • Pipeline parallelism: start processing next region i+1 before • Regions are processed serially

- - Particles found in region are sorted by p_T before output
- PUPPI particles are sent on 25 Gb/s optical fibres to Layer 2 (5 boards per event)
 - Jets (prev. talk), taus, e/γ , muons, MET

Floorplans, Resources

- All components deployed on prototype CMS Phase 2 L1T hardware
 - APx and Serenity ATCA cards with Xilinx Ultrascale+ FPGAs
- Tested loading data into input link buffer memories, 'playing' through algorithm and capturing at output memories
 - Compared against C++ software emulation: 100% agreement
- Tested using optical connections to neighbouring boards
 - Jets and electrons/photons in Layer 2, vertexing system

Resources	LUT	FF	BRAM	D
Barrel VU9P	36%	27%	15%	33
Endcap VU13P	20%	16%	26%	12
Forward VU13P	10%	8%	23%	2

- Processing timeline for Correlator Layer 1 Endcap: 9 regions in (η, ϕ)
- Regionizer starts organising objects immediately at t=0
 - PF begins after Time Multiplex Period (all data arrival time) + Regionizer latency
- PF, PUPPI, and Sorter modules are pipelined: start processing iteration I+1 before finishing iteration I
- 1.03 µs First In to Last Out latency, processing up to 1 billion particles per second (real occupancy is lower)

	 			I		l	
	Time Multiplex Period					Regioni	
				1		1	
	1			i		i	
	1			1		-	
	1						
	1					i	
	1			1			
	1			i I		i	
	1			!		-	
				1		l	
	₽ ₽		 	I I		 	
(0	20	00	40	00	Time	
						nine / ns	

Latency

CMS L1T PF PUPPI - Sioni Summers

Endcap Serenity VU13P

Physics Performance

- Below: response (left) and resolution (right) of Particle Plow reconstructed charged pions, neutral pions, long-lived neutral kaons in different detector regions
- Right: response of jets reconstructed with either tracks alone, calorimeter clusters alone, or PF particles
 - Particle Flow achieves better performance than sub-detectors used individually

CMS L1T PF PUPPI - Sioni Summers

11

Conclusion

- For the Phase 2 Upgrade, CMS Level 1 Trigger will perform Particle Flow and PUPPI reconstruction for the first time
 - To best utilise new detectors: tracks above 2 GeV, High Granularity endcap calorimeter, increased barrel calorimeter precision
- PF & PUPPI bring improved performance to L1T over using individual sub-detectors in isolation
- The algorithms have been simplified and implemented in Xilinx Ultrascale+ FPGAs on prototype trigger boards
- Detector split into (η, ϕ) regions for parallel processing
 - Macro-regions processed simultaneously on different boards
 - PF regions process sequentially within each board with pipeline parallelism
- PUPPI particles are sent from Correlator Layer 1 to Correlator Layer 2 for reconstruction of high level objects such as jets, taus, MET, and isolation computations
- Processing latency around 1 μ s, FPGA resources fitting within the constraints of the target devices

Backup

$$\alpha_C = \log \sum_{i \in \text{PV}, \Delta R < 0.3} \frac{\min(p_T^i, p_T^{\max})^2}{\max(\Delta R, \Delta R^{\min})^2},$$

- Neutral particle p_T weighted as $p_T' = w_i p_T$
- Weight computed per particle as:

$$w_{i} = \frac{1}{1 + e^{-x_{tot}}}$$

$$x_{tot} = x_{\alpha} + x_{p_{T}} - x_{PU}$$

$$x_{\alpha} = \min(\max(c_{\alpha} \cdot (\alpha - \alpha^{0}), -x_{\alpha}^{\max}), +x_{\alpha}^{\max})$$

$$x_{p_{T}} = c_{p_{T}} \cdot (p_{T} - p_{T}^{0})$$

$$x_{PU} = \log(N_{PU}/200) + c_{0}.$$

Constant parameters tuned to ensure good response and resolution for hadronic jets and MET

L1T PUPPI

CMS L1T PF PUPPI - Sioni Summers

14