
A Blueprint for a Contemporary
Storage Element
The WLCG Tier-2 Site “UKI-NORTHGRID-LANCS-HEP” at Lancaster University required a new solution for the site’s storage
element (SE), with an opportunity to start with a fresh installation “from the ground up”.

It was decided that a modular system, with data storage separate from the technologies used to serve the data, would be optimal. A
comprehensive monitoring infrastructure is desired, both to provide alerting to problems and allow measurement of performance. All components
are desired to be from standard industry or community sources - “off the shelf”.

The basic requirements were:
● Data Server: Provide at a minimum an https endpoint, and be capable of authenticated, integrity checked third party transfers.
● Data Storage: Allow for node-level failures without data loss, be capable of self-repairing and provide a mountable, posix-like interface.
● Monitoring: Real-time metric measurement and alerting for all components.
● All: Cope with the data access requirements for the site, in both the transfers to and from the site and feeding the 8000 job slots Lancaster

provides to WLCG VOs.

The chosen solution was an XROOTD cluster, mounting CEPHFS , monitored by a combined Prometheus/Loki stack.

XRootD/CephFS integration - Authentication
and ACLs
The XRootD services all write and read files under the “xrootd”
user. Access control for xroot or https/davs is controlled through
the xrootd authdb.

For users accessing through the CephFS mount, this posed
additional challenges. One was how to prevent unrecorded
writes, or even more worrying, deletions. The best solution to this
problem was straight forward - the CephFS mount across the
WNs was made to be read only.
To prevent users reading from other directories we turned to
extended ACLs, to provide group level control over reading of
directory trees.

This posed one more problem - DAV directory creation (MKCOL)
doesn’t allow for setting ACLs or permissions, and directories
created via DAVs didn’t inherit from their parent directories.
The solution to this final problem was to use the xrootd
“ofs.notify” functionality to call a “fix permissions” script on each
mkdir event.

In future releases of xrootd, there are plans to switch to a
multiuser capacity - we look forward to integrating any
developments in this area

In the above plots you can see the point where the addition of an extra redirector linearly increases the throughput.

XRootD/CephFS integration - Rucio Symlink
Most of the data at Lancaster is for ingesting by atlas jobs
running on our WNs. During the initial deployment, these jobs
just accessed their files over the internal xroot. As the files
were available through posix access on the WNs cephfs
mount this was incredibly inefficient!

In response, the UK Atlas Cloud Manager James
(re-)implemented a rucio module to simply symlink to the file’s
location within the cephfs mount, rather then copy the file
locally. This greatly reduces the internal traffic accessing our
xrootd servers.

For future development, native xrootd “redirect to file location”
functionality would allow more efficient access for non-rucio
using VOs.

Plots of internal network accesses to the XRoot Server,
showing the clear dropoff when atlas jobs were switched to
using symlink access.

XRootD Server Hardware Requirements
Our servers are across a diverse site of physical nodes,
some purchased for the role, others repurposed.

The experience gained suggests for a high-performance
XRootD installation the most important hardware
consideration is RAM. Our most performant (least
loaded) servers are repurposed ZFS servers with 192GB
of memory. Conversely, the redirector service is
incredibly lightweight.

We have near-term plans to move our redirector onto our
institution’s resilient virtualisation platform.

Ceph Hardware
OSD Nodes

● 2 x Intel Xeon Gold 5215 20 cores/40 threads
● 256GB RAM
● 2 x 480GB SSD RAID for OS
● 2 x 1.6TB NVMe for OSD DB
● 24 x 16TB (384TB) HDD for cluster data
● 25GbE Network Interface

Admin Nodes

● 2 x Intel Xeon Gold 6248 – 40 cores/80 threads
● 192GB RAM
● 2 x 480GB SSD RAID for OS
● 2 x 2TB HDD for logging/Ceph data
● 25GbE Network Interface

AWS S3 Gateway

● Virtual Machine, 4 core CPU
● 8GB RAM
● 1 x 80GB HDD

CephFS
The existing software (XRootD, Arc, etc) is designed
to interact with a POSIX file system. Ceph provides a
POSIX-compliant interface via CephFS. Using
CephFS has proved to simple to configure and use on
the client machines.

There are two options when using CephFS on the
client machines: The FUSE client and the kernel
client. We have chosen to use the kernel client as it
provides better performance than the FUSE client.
We are running CentOS 7 on the client machines
which only provides Ceph Octopus and lower version
clients. Fortunately, Ceph is designed to allow
Octopus clients to work with a Pacific cluster.

Administration
Since going live with the Ceph Cluster, we have had a
few hard drive failures. We have also needed to apply
security updates and restart all the machines in the
cluster. Both of these actions were performed with the
cluster remaining up and caused no noticeable impact
from the users' perspective.

OSD Configuration
Each OSD node has 24 HDDs for object storage and 2 NVMe drives for the OSD
daemon DB/WAL. The NVMe drives are used separately rather than being configured
using RAID. Each NVMe is configured to store the DB for 12 HDDs. The advantage of
this approach compared to RAID is that the amount of data written to each NVMe is
reduced by 75% and effectively increasing the life expectancy of the NVMe by 4x. The
disadvantage is that when an NVMe drive fails the cluster automatically loses 12 OSD
daemons.

NVMe 1

HDD

OSD
Daemon

12 x OSD Daemons

NVMe 2

HDD

OSD
Daemon

12 x OSD Daemons

Lancaster site

10PB file system

Ceph cluster

CephFS

Rucio, FTS

Jobs (CE, WNs)

Other SEs

XRootD
cluster

mon

mon

mon

inter-site
transfers

stage-out
writes

file import and
export

file reads
and

scratch

local file
references

Grafana
dashboards

Email
alerts

Prometheus
metrics

Loki
logs

Alert
Manager

monitoring
agentmonitoring

agentmonitoring
agent

Monitoring stack
The installation is monitored using a Prometheus time-series DB and a Loki log aggregator, populated using various passive and
active monitoring agents co-located with storage and gateway components. These include the Prometheus Node Exporter, Loki
PromTail, Ceph's in-built exporter, and several custom scripts [5] to work with XRootD's f-streams and summary reporting, and
with Ceph's presentation of SMART disc health metrics. Grafana provides the visualization of live and historical data to the
operator, while AlertManager manages live delivery of Prometheus-generated alerts via email and potentially other notification
systems.

Challenges were addressed mostly by custom monitoring agents:
● Translating XRootD and SMART metrics for Prometheus
● Matching XRootD's push of metrics to the traditional pull/scrape of Prometheus—Uses Prometheus remote-write interface,

which Loki also uses for recordings
● Representing static expectations and relations—YAML configuration describes network/interface topology, services and

certificates expected, number of Ceph OSDs expected per host, names of expected XRootD instances, etc
● Correlation of metrics from different subsystems—Renamed/eliminated some labels in Prometheus configuration
● Timely acquisition of SMART metrics—696 requests via Ceph, each taking 1-2s; remote-write means each can be

recorded individually, as soon as available

Advantages:
● Detection of impending resource exhaustion on XRootD nodes
● Detection of growing defect list and write errors of Ceph OSD discs
● Correlation of disc failures to physical location

○ for replacement
○ for impact from environment (heat, vibration?)

recordings

query
results

query
results

alerts

coalesced
alerts

Presented by Roger Jones at CHEP2023. Produced by Steven Simpson, Peter Love, Gerard Hand and Matt Doidge.
With thanks to Sam Skipsey (Glasgow University) and James Walder (RAL STFC).

Lancaster Site
CEPHFS/XROOT
Architecture

Detection of FD exhaustion
Monitoring helped to spot an irregularly recurring issue with XRootD, whereby it
would appear to reach a cap of around 65k file descriptors attached for polling. In
the first case, this correlated to a GGUS ticket on many connection timeouts.
Restarting the problematic instance mitigated the problem. Monitoring identified
which instances manifested the problem, and when, so only faulty instances
needed a restart. It also showed that the redirector was unaffected, and that
instances running on newer OSes (Rocky8 vs CentOS7) were also immune.

Plot showing the load for all XRoot Server (cluster) processes
Note that the redirctor load is so low as to be barely visible.

Architecture
The installation is built around a Ceph cluster providing 10PB of object store, presented
through CephFS as a POSIX file system to worker nodes and gateways.

A cluster of XRootD gateways present remote authenticated access to this file system, and
through these Rucio and FTS populate it with transfers from other sites. This serves as
preparation for jobs on the worker nodes, which consult Rucio to locate local copies of files.
Rucio's structural awareness of the site allows it to point jobs at the local CephFS mount,
and have them directly read from the file.

The XRootD gateways also perform administration tasks, such as producing lists of stored
files or the Storage Resource Reporting json.

Jobs with bulk output write back via the local gateways to enforce the more sophisticated
access control that XRootD can enforce for writes. This output can then be delivered under
the control of Rucio/FTS to other sites.

CephFS also provides a job data scratch area, replacing NFS in our cluster. This is a
separate small pool, mounted r/w.

Gateways and storage are monitored continuously with Prometheus and Loki.

Benefits:
● Reliable/failure-tolerant storage supporting on-line hardware replacement without file

loss
● Authorization integrity maintained both internally and externally
● Inter-site transfers exploiting available bandwidth/capacity
● Efficient read access to files
● Identification of failing discs, disconnected hosts, exhausted resources
● Using CephFS allowed XRootD machines and Compute Nodes to continue using

same software.

Monitoring console
System health is observable through Grafana dashboards. Above shows four
OSD hosts, indicating that one of them is missing an OSD. Below is the main
dashboard, including:

● Over-all Ceph health
● Lists of unused discs/counts of missing OSDs per host
● Unresponsive hosts, XRootD instances and monitoring agents
● Host reboots and service restarts
● Used and available storage capacity
● Recent annotations and current alerts
● Links to other dashboards and external monitoring

29 x OSD Nodes
(696 OSD Daemons)

Mon
+

MGR

Mon
+

MGR

Mon
+

MGR

Slave
MDS

Active
MDS

AWS S3
Gateway

Internet

Control Flow

Data Flow

CephFS Clients

Admin NodesCeph Architecture

Why Choose XRootD?
Our data server was required to have the following minimal functionality

● https/davs access
● TPC support
● VOMS authentication
● Flexible scalability
● (For future-proofing) Token authentication support

The data server solution that filled all these criteria was XRootD [2].

XRootD is a well known and well established software framework for scalable and fast
data access, originating from SLAC. There is a large amount of expertise and
experience in deploying, tuning and operating XRootD instances in the UK and the
WLCG communities. In addition, XRootD is being adopted by communities and fields
beyond High Energy Physics - such as astronomy.

Installation and Configuration
Cephadm was used to install Ceph Pacific.
Ceph orchestration is used to configure and
control administration of the nodes.
Configuration of all the nodes was straight
forward with the use of a few YAML files
and completed without any issues.

Looking at the Ceph Architecture diagram
below, the installation of Ceph looks like a
typical installation. There are a couple of
things that aren’t obvious from the diagram.
(Limited cabinet space for the cluster and
alternative OSD configuration)

The cabinet space limitations, means we
are limited to four cabinets for the Ceph
cluster, which isn’t ideal. In the event of a
rack level failure the cluster will switch to a
“read-only” state.

The admin nodes are in separate cabinets to avoid losing more than one admin node in the event of a cabinet level failure. An OSD node in
each cabinet has been designated as possible a manager+monitor node in the event of an admin node failure. If an admin node should fail, the
orchestration will automatically select an available OSD node and install the monitor and manager services, thus restoring the minimum required
number of monitor+manager nodes. Once the admin node has been restored, the OSD node can be returned to being just a OSD Node. We
chose to use the minimum of 3 admin nodes to maximise the available storage using the available budget.

The OSD nodes are fitted with 2x1.6TB NVMe drives. Instead of configuring these drives to use RAID, we assigned 12 OSD Daemons to each
NVMe drive which not only increases the amount of available space for the OSD DB/WAL but also increases the life expectancy of the drives
compared to using them in a RAID Configuration. (See OSD Configuration below).

Why Choose Ceph?
Ceph is capable of scaling easily without down time. It is designed to run on
commodity hardware and mitigates the risk of single point of failure.

Redirector Setup
A single XRoot host alone cannot provide the
throughput to utilise the available site bandwidth of
25Gb/s. Transfers, and in particular the post-transfer
file integrity check, are resource-intensive -
particularly using a lot of RAM. This was confirmed
in a test involving the rapid transfer of ATLAS data
to the site [3].

In order to overcome this, we deployed XRootD in a
redirector/cluster fashion. At the time of writing this
was 4 nodes - but as noted in the HEPiX study, the
improvements to throughput performance were
almost linear in proportion to the number of
deployed nodes, and would be possible to scale up
until the bottleneck was moved to the site network
link.

[3] HEPIX talk

[4] Lancaster
Gridsite xroot

configs

[6] Storage
Resource
Reporting

Script

[5] Custom
monitoring

scripts

[1] Ceph [2] XRootD

References

