Norfolk, Virginia, USA « May 8-12, 2023

% Cl.b

irene Joliot-Curie

Laboratoire de Physique
des 2 Infinis

Multidatabase

Julius Hrivnac, Julien Peloton (1/Clab Orsay)

FﬂE

Particle Physics experiments and Astronomy telescopes store a large amount of data, most of those data are usually stored in simple files in various format. Databases are used only to a limited
extend, while database technology has made a tremendous progress in recent years, offering a large spectrum of applications in all possible domains. Those possibilities are still largely underused.
A lot of ongoing HEP effort to make execution more structured and parallel (Parallel programming, Functional programming).

Less effort (so far) to structure the data: More structured data => simpler and faster access.

A wide spectrum of database technologies exist. A pragmatic approach is needed to use each technology in its domain of strength, combining them in a hybrid architecture.

Computing in High Energy & Nuclear Physics

Hybrid frchitecture 301

Efficient for well structured homogeneous data M
Limited flexibility

> Store unstructured (raw) data in table-like storage (SQL, NoSQL)
o Suitable for intensive, parallel processing (Spark,...)

V'V

. . > (Captures essential relations
o Interpretable as Datagrams-like apis > Flexible
> Express persistent structure as a Graph WoSQl > FEast
> Allow for ad-hoc (a’priory volatile) Graph relations - S?S acg:e.sst.
o Possibly in separed. (but connected) graphs > Flexible > Urc])r\:veecrelgézc ICZ)r:/erhead for simple data
m Playgrounds, Whiteboards,... > Scalable ry P
> Connect everything behind the common API > Often lacks higher level API (query language)

> Make special kind of DataLink Vertex

® o 'v.v \ E > e i — I . Q2 - "
M A %\N o representing relations to external data (in
) Vertex
! \

any storage)

gﬂph &wem > Those Vertexes can be attached to any

; Vertex
Q > Make an enhanced version of @(L@ > Advantage:

_ J \{er_tex with additional methods to o Easy to implement
. fill it from external tabular storage o Transparent logic
. N\, ® > Feasible, has been implemented Tabular storage o Works between any pair of databases with
g s > Logical problems: (3QT, NeSQT....) any technology
BN o Consistency between (already m We can even connect to Graphs like that
~ copied) Vertex and original data
Tabular storage . Sear_Ch semantics // Create Datalink Vertexes with associated data in another database
) (8Q1, NoSQ1,...) | > Unpredictable performance // (Phoenix/SQL, Graph, HBase,...)
Mh (I/ww o Don’t know where actually are data wl = g.addV().property('lbl', 'datalink').
and whether will be copied or property('technology', 'Phoenix').
- 4 accessed remotely property('url', 'jdbc:phoenix:ithdp210l1.cern.ch:2181").
> Interpret existing tabular data as property('query’, "...")
Vertexes in a Graph w2 = g.addV().property('lbl', 'datalink').
> Add additional Edges to express property('technology', 'Graph').
structures // Create an alert vertex property('url', 'hbase:188.184.87.217:8182:janusgraph').
v = g.addV().property('lbl’, ‘'alert’) property('query’', "...")

> Requires full-featured rather generic

: : // Dress it as (a subtype of) Hertex (= HBase backed Vertex w3 = g.addV().property('lbl', 'datalink').
|mple_mentat|9n of the Graph storage // which _is_a(_ Verté/fso Z has all \(/en‘ex properties) property('technology’', 'HBase').
o Difficult to implement h = Hertex.enhance(v) property('url', '134.158.74.54:2183:ztf:schema’).
Tabular storage o Doesn’t exist property('query’', "...")
($Q1, NoSQT....) o Most Graph implementation use tabular // Create a new alert vertex (connect to HBase data later) // Connect Datalink to any Vertex
store as a backend, but impose their own a = Alert.getOrCreate('ZTF19acmbwur_2458789.0311458', g, false); theVertex.addEdge('externalData').to(w)
schema // Create a new alert vertex (and connect to HBase data) // Get associated data
a = Alert.getOrCreate('ZTF19acmbwur_2458789.0311458", g, true); externalData = Lomikel.getDatalLink(w)

Real-life les - Tink/1SST

Science data

Legacy Survey of Space and Time Main streams '_

]] LSST, ZTF Accessto !
> Rubin Observatory for Legacy Survey of Space and Time (LSST) archived data ¥
> Camera 8.4 m, 3.2 Gpixel in Chili > Fink Broker Akl
> 10 millions alerts (= 1 TB) nightly > Using Apach/Spark & Big Data / NoSQL |
> 20 TB of data (lmages) nightly - Hgdoop & JanusG.ra_ph for storage PR — L/-\c-c;s;i;g-l-'-in-l(?iv-e-
> 500 PB of data in 10 years (3 PB of alerts) > Fink is one of the official LSST brokers streams filtered streams
> Alerts send over the world via network of ‘brokers’
> Commissioning in 2023, production in 2024

> All coming alert data are stored in HBase tables > Search for ‘interesting’ relations and store them in Graph as Edges for later analyses.
> The alert data structure is created in the JanusGraph > Do itin your private subgraph.
o Contains also the most important attributes
o Has datalinks to HBase data
// Create a new personal Graph.
// Get data (from HBase) attached in 'candidate's graphl = Lomikel.myGraph()
g.V().has('1bl"', 'source’). // Get the entry point to the Graph traversal.
has('objectId', 'ZTF18abimyys').out(). gl = graphl.traversal()
has('1bl"', ‘alert’).out(). // GremlinRecipies 1s a class with various useful Gremlin methods.
has('1bl"', 'candidate’).out(). gr = new GremlinRecipies(g)
has('1bl"', "datalink’). // Get 'source' Vertexes from the main Graph (automatically available as 'g') and
each { // clone them in the private Graph 'gl’.
println(FinkBrowser.getDataLink(it)) g.V().has('1lbl', 'source').each {source ->
o } gr.gimme(source, gi, -1, -1)
Candidate data }

// Get GremlinRecipies for the private graph 'gl’.

grl = new GremlinRecipies(gl)

// Find all pairs of 'candidate' Vertexes, where difference between their 'rb'’
g’ // fields 1is bigger or equal to 0.01.

g £:> distance // Connect them with the Edge 'distance' having a 'difference' property equal to

// the difference between 'rt' fields.

grl.structurise(gl.VvV().has('1lbl', 'candidate'), 'rb[@]-rb[1]', ©0.01, 'distance', 'difference’', ...)
// Get some statistics about newly created Edges.
g1l.E().hasLabel('distance’).values('difference’').union(min(), max(), sum(), mean(), count())

> Graphical Database advantages
o More transparent code
m Stable data structure is handled in the storage layer
Suitable for Functional Style and Parallelism
Suitable for Deep Learning
Suitable for Declarative Analyses
Can help with Analysis Preservation
Language & Framework neutral

> Hybrid Storage advantages
o Expressiveness and flexibility of Graph Databases
o With performance and simplicity of tabular storage
o Under transparent interface

O O O O O

