
Multidatabas
Particle Physics experiments and Astronomy telescopes store a large amount of data, most of those data are usually stored in simple files in various format. Databases are used only to a limited
extend, while database technology has made a tremendous progress in recent years, offering a large spectrum of applications in all possible domains. Those possibilities are still largely underused.
A lot of ongoing HEP effort to make execution more structured and parallel (Parallel programming, Functional programming).
Less effort (so far) to structure the data: More structured data => simpler and faster access.
A wide spectrum of database technologies exist. A pragmatic approach is needed to use each technology in its domain of strength, combining them in a hybrid architecture.

➢ Interpret existing tabular data as
Vertexes in a Graph

➢ Add additional Edges to express
structures

➢ Requires full-featured rather generic
implementation of the Graph storage
○ Difficult to implement
○ Doesn’t exist
○ Most Graph implementation use tabular

store as a backend, but impose their own
schema

Grap View

Tabular storag
(SQL, N SQL,...)

➢ Make an enhanced version of
Vertex with additional methods to
fill it from external tabular storage

➢ Feasible, has been implemented
➢ Logical problems:

○ Consistency between (already
copied) Vertex and original data

○ Search semantics
➢ Unpredictable performance

○ Don’t know where actually are data
and whether will be copied or
accessed remotely

Grap Envelop

// Create an alert vertex
v = g.addV().property('lbl', 'alert')
// Dress it as (a subtype of) Hertex (= HBase backed Vertex)
// which _is_a_ Vertex so it has all Vertex properties
h = Hertex.enhance(v)

// Create a new alert vertex (connect to HBase data later)
a = Alert.getOrCreate('ZTF19acmbwur_2458789.0311458', g, false);
// Create a new alert vertex (and connect to HBase data)
a = Alert.getOrCreate('ZTF19acmbwur_2458789.0311458', g, true);

Tabular storag
(SQL, N SQL,...)

Vert

➢ Make special kind of DataLink Vertex
representing relations to external data (in
any storage)

➢ Those Vertexes can be attached to any
Vertex

➢ Advantage:
○ Easy to implement
○ Transparent logic
○ Works between any pair of databases with

any technology
■ We can even connect to Graphs like that

Bridg

// Create DataLink Vertexes with associated data in another database
// (Phoenix/SQL, Graph, HBase,...)
w1 = g.addV().property('lbl', 'datalink').
 property('technology', 'Phoenix').
 property('url', 'jdbc:phoenix:ithdp2101.cern.ch:2181').
 property('query', "...")
w2 = g.addV().property('lbl', 'datalink').
 property('technology', 'Graph').
 property('url', 'hbase:188.184.87.217:8182:janusgraph').
 property('query', "...")
w3 = g.addV().property('lbl', 'datalink').
 property('technology', 'HBase').
 property('url', '134.158.74.54:2183:ztf:schema').
 property('query', "...")
// Connect DataLink to any Vertex
theVertex.addEdge('externalData').to(w)
// Get associated data
externalData = Lomikel.getDataLink(w)

Dat Lin
Vert

Tabular storag
(SQL, N SQL,...)

➢ Store unstructured (raw) data in table-like storage (SQL, NoSQL)
○ Suitable for intensive, parallel processing (Spark,...)
○ Interpretable as Datagrams-like apis

➢ Express persistent structure as a Graph
➢ Allow for ad-hoc (a’priory volatile) Graph relations

○ Possibly in separed (but connected) graphs
■ Playgrounds, Whiteboards,...

➢ Connect everything behind the common API

Hybri Architectur

Rea -lif ample - n /LSST

➢ All coming alert data are stored in HBase tables
➢ The alert data structure is created in the JanusGraph

○ Contains also the most important attributes
○ Has datalinks to HBase data

// Get data (from HBase) attached in 'candidate's

g.V().has('lbl', 'source').

 has('objectId', 'ZTF18abimyys').out().

 has('lbl', 'alert').out().

 has('lbl', 'candidate').out().

 has('lbl', 'datalink').

 each {

 println(FinkBrowser.getDataLink(it))

 }

// Create a new personal Graph.

graph1 = Lomikel.myGraph()

// Get the entry point to the Graph traversal.

g1 = graph1.traversal()

// GremlinRecipies is a class with various useful Gremlin methods.

gr = new GremlinRecipies(g)

// Get 'source' Vertexes from the main Graph (automatically available as 'g') and

// clone them in the private Graph 'g1'.

g.V().has('lbl', 'source').each {source ->

 gr.gimme(source, g1, -1, -1)

 }

// Get GremlinRecipies for the private graph 'g1'.

gr1 = new GremlinRecipies(g1)

// Find all pairs of 'candidate' Vertexes, where difference between their 'rb'

// fields is bigger or equal to 0.01.

// Connect them with the Edge 'distance' having a 'difference' property equal to

// the difference between 'rt' fields.

gr1.structurise(g1.V().has('lbl', 'candidate'), 'rb[0]-rb[1]', 0.01, 'distance', 'difference', …)

// Get some statistics about newly created Edges.

g1.E().hasLabel('distance').values('difference').union(min(), max(), sum(), mean(), count())

➢ Search for ‘interesting’ relations and store them in Graph as Edges for later analyses.
➢ Do it in your private subgraph.

1
distanc

SQL

➢ Flexible
➢ Scalable
➢ Often lacks higher level API (query language)

N SQL
➢ Captures essential relations
➢ Flexible
➢ Fast access
➢ Slower injection
➢ Unnecessary overhead for simple data

Grap

Juliu Hrivna , Julie Peloto (ĲClab Orsa)

Vert

Vert
Vert

Vert
Vert

➢ Hybrid Storage advantages
○ Expressiveness and flexibility of Graph Databases
○ With performance and simplicity of tabular storage
○ Under transparent interface

➢ Efficient for well structured homogeneous data
➢ Limited flexibility

➢ Graphical Database advantages
○ More transparent code

■ Stable data structure is handled in the storage layer
○ Suitable for Functional Style and Parallelism
○ Suitable for Deep Learning
○ Suitable for Declarative Analyses
○ Can help with Analysis Preservation
○ Language & Framework neutral

➢ Rubin Observatory for Legacy Survey of Space and Time (LSST)
➢ Camera 8.4 m, 3.2 Gpixel in Chili
➢ 10 millions alerts (= 1 TB) nightly
➢ 20 TB of data (images) nightly
➢ 500 PB of data in 10 years (3 PB of alerts)
➢ Alerts send over the world via network of ‘brokers’
➢ Commissioning in 2023, production in 2024

➢ Fink Broker
➢ Using Apach/Spark & Big Data / NoSQL

○ Hadoop & JanusGraph for storage
➢ Fink is one of the official LSST brokers

