
Analysis of StoRM log files

CHEP2023, 8th-12th May 2023, Norfolk, USA
Contribution ID: 468 - Contacts: lorenzo.rinaldi@unibo.it

Using ML clustering tools to improve
data transfer management operations

L Rinaldi1 , L Clissa2, L Morganti3
1)Bologna University and INFN, 2)INFN-Bologna, 3)INFN-CNAF

Analysis of File Transfer Service (FTS) errors

The GRID computing paradigms adopted by
the main HEP experiments are based on the
distribution of experimental data on
computer resources located all over the world

An approach based on unsupervised ML
techniques is used to automatically process
information stored in log files with the aim of
grouping the error messages and speed up
the procedures for detecting errors and
solving problems

Clustering pipeline

Step 1: text pre-processing
• Lowercase transformation and

punctuation/stopword stripping
• Tokenization
• URL split

Step 2: vectorization
• Transformation of the pre-processed

text into numeric information to map
each message to a point in a
vectorial subspace (embedding)

• word2vec language model adopted

Step 3: clustering
• k-means++ algorithm: intuitive

approach and good performance in
a wide range of applications

• The number of clusters k is selected
at each clustering stage based on a
grid search and geometrical criteria:
• Within cluster Sum of Squared

Errors (elbow method)

𝑥! generic data point
�̅�" centroid of a generic cluster 𝐶"

• Average Silhouette Width (max)

$𝑎! distance of 𝑥! from same cluster points
𝑏! distance of 𝑥! from other clusters points

Step 4: post-processing
• Organize results according to the use

case

Computing and Software for Big Science (2022) 6:16

1 3

Page 7 of 15 16

implemented by pyspark) to compute message embed-
dings starting from pre-processed tokens. Specifically, the
model is trained once on one month of data—from 2020-
10-01 to 2020-10-31—for a total of nearly 28.6 M error
messages, corresponding to a vocabulary of 970 unique
tokens. The pre-trained model is then re-used as-is for online
application, possibly updating it once in a while—say every
4–6 months. The assumption underneath this strategy is that
semantic and syntactic relationships within messages should
be stable or slowly-varying across time, thus not requiring
frequent updates of token’s embedded representations. Once
the model is trained, the resulting word embeddings are used
to transform single tokens into numerical vectors, and they
are then averaged to get the corresponding message repre-
sentations. Regarding hyper-parameters, the window size,
the embedding size and the minimum count were the ones
affecting the final representation the most. For this reason, a
grid search is conducted to compare alternative parametriza-
tions in terms of the following clustering performance. In
practice, the word2vec model is trained with a given hyper-
parameters configuration and then used as embedding for the
subsequent clustering stage. The latter is repeated several
times for errors happening on different days (not included in
the word2vec training period), and the optimal configuration
is then chosen based on the compactness of the resulting
groups in terms of the WSSE and ASW metrics introduced
in Sect. 2.3. The values of w = 12 (window size), h = 300
(embedding size) and min_count = 50 (minimum count)
seem to work best in our experiments and are therefore
adopted in the following.

Clustering

The next step of the pipeline is the clustering stage. In this
study, we resort to clustering for grouping messages includ-
ing similar content. The resulting clusters are therefore inter-
preted as error categories. The idea is to repeat this stage for
online processing of new data bunches, e.g. every day, every
shift or every 4 hours. In fact, conversely to the message
structure, the malfunctions observed in the infrastructure
may change from day to day, which calls for a more flexible
definition of what and how many error categories are present
in the analyzed data.

In practice, we adopt a slight variation of the k-means
algorithm [28] referred to as k-means++ [4]. Although
more advanced clustering algorithms are available and may
be applied to our use case [2, 19, 29, 33, 41], the choice of a
k-means algorithm is justified by its intuitive approach and
good performance in practice in a wide range of applica-
tions [38]. Also, a perhaps more profound and substantial
motive is that the clustering strategy may be seen as a func-
tional but not primary pipeline stage. Indeed, the learned
language model determines the geometry of the embedded

space, thus influencing the point cloud shapes of different
error categories. For this reason, we embrace the idea that
a simple clustering algorithm is preferable, and particular
attention must be devoted to tuning the vectorization stage
for easing the subsequent clustering, possibly even foster-
ing the learning of an optimal representation for a specific
clustering algorithm [40].

To demonstrate the approach, we report the analysis of
FTS data from one full day of operation (2021-01-15)—cor-
responding to roughly 1 M errors and 1.5 GB of data—,
where the cosine similarity is adopted as common practice
in similar applications. To help the successive evaluation
phase, only transfers between pledged WLCG resources
(namely Tier-0, Tier-1s and Tier-2s) are considered in the
analysis, thus discarding transfers involving local clusters
or HPC centers.

The number of clusters, k—in our case, the unknown
number of error categories—is selected at each clustering
stage based on a grid search for k ∈ [12, 15, 20, 30] . For this
purpose, two geometrical criteria are considered to compare
results of different settings. The first is the Within cluster
Sum of Squared Errors (WSSE):

where xi is a generic data point, dist is a desired distance
measure, and Cj and x̄j indicate a generic cluster and its
centroid, respectively. The second is the Average Silhouette
Width (ASW) [35]:

where n is the total number of observations, i.e. error mes-
sages in our case, āi is the average distance of xi from all
the other points belonging to the same cluster CI , and bi is
the minimum average distance of xi from the observations
in all the other clusters Cj,∀j ≠ I . The WSSE measures the
internal cluster variability, so the lower its value, the bet-
ter the performance. The ASW, instead, accounts for both
internal homogeneity and external separation of the clusters
(bounded in the interval [−1,+1] : the closer to 1, the better).
Given the more intuitive reading of ASW values, the latter is
used in the following as the main figure of merit. The results
of the comparison between WSSE and ASW for different
values of k are reported in Fig. 4. Both indicators tend to
improve as the number of clusters increases. In particular,
a value of k = 30 clusters seems to be optimal according to
both criteria. Notably, however, the ASW indicator reaches
very high values (around 0.9) even for lower k values, which
means nearly-optimal performances can be achieved with
fewer clusters. For this reason, the configuration having k =

(1)WSSE(dist, k) =

k
∑

j=1

∑

xi∈Cj

dist
(

xi − x̄j
)

,

(2)ASW(dist, k) =
1

n

n
∑

i=1

bi − āi

max
(

āi, bi
) ,

Computing and Software for Big Science (2022) 6:16

1 3

Page 7 of 15 16

implemented by pyspark) to compute message embed-
dings starting from pre-processed tokens. Specifically, the
model is trained once on one month of data—from 2020-
10-01 to 2020-10-31—for a total of nearly 28.6 M error
messages, corresponding to a vocabulary of 970 unique
tokens. The pre-trained model is then re-used as-is for online
application, possibly updating it once in a while—say every
4–6 months. The assumption underneath this strategy is that
semantic and syntactic relationships within messages should
be stable or slowly-varying across time, thus not requiring
frequent updates of token’s embedded representations. Once
the model is trained, the resulting word embeddings are used
to transform single tokens into numerical vectors, and they
are then averaged to get the corresponding message repre-
sentations. Regarding hyper-parameters, the window size,
the embedding size and the minimum count were the ones
affecting the final representation the most. For this reason, a
grid search is conducted to compare alternative parametriza-
tions in terms of the following clustering performance. In
practice, the word2vec model is trained with a given hyper-
parameters configuration and then used as embedding for the
subsequent clustering stage. The latter is repeated several
times for errors happening on different days (not included in
the word2vec training period), and the optimal configuration
is then chosen based on the compactness of the resulting
groups in terms of the WSSE and ASW metrics introduced
in Sect. 2.3. The values of w = 12 (window size), h = 300
(embedding size) and min_count = 50 (minimum count)
seem to work best in our experiments and are therefore
adopted in the following.

Clustering

The next step of the pipeline is the clustering stage. In this
study, we resort to clustering for grouping messages includ-
ing similar content. The resulting clusters are therefore inter-
preted as error categories. The idea is to repeat this stage for
online processing of new data bunches, e.g. every day, every
shift or every 4 hours. In fact, conversely to the message
structure, the malfunctions observed in the infrastructure
may change from day to day, which calls for a more flexible
definition of what and how many error categories are present
in the analyzed data.

In practice, we adopt a slight variation of the k-means
algorithm [28] referred to as k-means++ [4]. Although
more advanced clustering algorithms are available and may
be applied to our use case [2, 19, 29, 33, 41], the choice of a
k-means algorithm is justified by its intuitive approach and
good performance in practice in a wide range of applica-
tions [38]. Also, a perhaps more profound and substantial
motive is that the clustering strategy may be seen as a func-
tional but not primary pipeline stage. Indeed, the learned
language model determines the geometry of the embedded

space, thus influencing the point cloud shapes of different
error categories. For this reason, we embrace the idea that
a simple clustering algorithm is preferable, and particular
attention must be devoted to tuning the vectorization stage
for easing the subsequent clustering, possibly even foster-
ing the learning of an optimal representation for a specific
clustering algorithm [40].

To demonstrate the approach, we report the analysis of
FTS data from one full day of operation (2021-01-15)—cor-
responding to roughly 1 M errors and 1.5 GB of data—,
where the cosine similarity is adopted as common practice
in similar applications. To help the successive evaluation
phase, only transfers between pledged WLCG resources
(namely Tier-0, Tier-1s and Tier-2s) are considered in the
analysis, thus discarding transfers involving local clusters
or HPC centers.

The number of clusters, k—in our case, the unknown
number of error categories—is selected at each clustering
stage based on a grid search for k ∈ [12, 15, 20, 30] . For this
purpose, two geometrical criteria are considered to compare
results of different settings. The first is the Within cluster
Sum of Squared Errors (WSSE):

where xi is a generic data point, dist is a desired distance
measure, and Cj and x̄j indicate a generic cluster and its
centroid, respectively. The second is the Average Silhouette
Width (ASW) [35]:

where n is the total number of observations, i.e. error mes-
sages in our case, āi is the average distance of xi from all
the other points belonging to the same cluster CI , and bi is
the minimum average distance of xi from the observations
in all the other clusters Cj,∀j ≠ I . The WSSE measures the
internal cluster variability, so the lower its value, the bet-
ter the performance. The ASW, instead, accounts for both
internal homogeneity and external separation of the clusters
(bounded in the interval [−1,+1] : the closer to 1, the better).
Given the more intuitive reading of ASW values, the latter is
used in the following as the main figure of merit. The results
of the comparison between WSSE and ASW for different
values of k are reported in Fig. 4. Both indicators tend to
improve as the number of clusters increases. In particular,
a value of k = 30 clusters seems to be optimal according to
both criteria. Notably, however, the ASW indicator reaches
very high values (around 0.9) even for lower k values, which
means nearly-optimal performances can be achieved with
fewer clusters. For this reason, the configuration having k =

(1)WSSE(dist, k) =

k
∑

j=1

∑

xi∈Cj

dist
(

xi − x̄j
)

,

(2)ASW(dist, k) =
1

n

n
∑

i=1

bi − āi

max
(

āi, bi
) ,

 Computing and Software for Big Science (2022) 6:16

1 3

16 Page 10 of 15

expresses the goodness of fit based on their interpretability,
i.e. how messages of the same cluster resemble each other’s
meaning. Second, a quantitative evaluation is addressed
by cross-checking the clustering result against the GGUS
reported incidents. In this way, a more direct measure of
impact is given by reckoning the ability of our approach to
mimic current operations.

Qualitative Assessment: Interpretability

This section presents a qualitative assessment of the clus-
tering performance based on the interpretability of the dis-
covered groups of messages. In particular, the discussion is
articulated by simulating the operator’s perspective when
reading the pipeline outputs. In the following, we report five
cherry-picked examples to showcase our approach’s major
successes and failures, articulating the discussion from the
operator’s perspective when reading the pipeline outputs.
Specifically, we first illustrate a thorough examination of the
biggest cluster discovered (see Fig. 5, cluster with id = 0).

Then we highlight some strengths and limitations of our
approach, bringing other exemplary cases as evidence. The
same procedure and similar conclusions apply likewise to
most groups. Thus, a complete dissertation is omitted here
for conciseness7.

The main output of our pipeline is the summary table
illustrated in Figs. 5, 6, which reports a succinct highlight
of the cluster contents and represents the most substantial
source of information. A reasonable reading approach is to
start with the groups including more errors and gradually
proceed with the smaller ones.

In this case, the biggest cluster is shown in Fig. 5 in the
first row with id = 0 . Despite including almost 820k error
strings (# cluster size), the actual number of different
messages is only 117 (# strings). This number further
reduces to simply 14 unique patterns (# patterns) after
the abstraction mechanism described in Sect. 2.4 is applied,
which is way more manageable for manual inspection than
the initial cluster size. A second insight is then provided
by the Top-3 section. Including the auxiliary information
about the source and destination sites involved makes it evi-
dent as the failures are united by the same error template
and destination site. This suggests that Site-4 may have a
problem and that its root cause is linked to the error pattern
reported in the message column. Finally, the last piece
of information to consider is the time evolution plot (see
Fig. 7a). In this case, the cluster shows an increasing trend
throughout the whole day of analysis. Specifically, the num-
ber of generated failures grows from less than 2000 errors at
the beginning of the day to a value around five times higher,
with an increment boost from 9 a.m. onwards. By and large,

Fig. 7 Time evolution charts. The figure illustrates several time patterns for the generated failures in 4 different clusters. Each plot reports the
count of errors in bins of 10 min

7 Full results available at: https://l. infn. it/ opint- resul ts.

Computing and Software for Big Science (2022) 6:16 https://doi.org/10.1007/s41781-022-00089-z

Cluster Description (tabular format)

Analysis of the error messages in FTS log files (1 day)

The three most frequent triplets of <pattern>-<source>-
<destination> reported in descending order for each cluster

Precious insights for spotting:
• what type of errors and where they occur
• amount of errors, both absolute and relative to the error

group

Time Series

Temporal trend of the number of errors generated by each
cluster
• escalating or cyclical failures àrequire immediate

actions
• transient or in resolution

Computing and Software for Big Science (2022) 6:16

1 3

Page 11 of 15 16

all these factors clearly advise that a potential issue is hap-
pening at Site-4 as it always appears as a destination.
Also, the message information further suggests that the fail-
ure is linked to a revoked certificate that cannot be verified.
Finally, the time chart shows that the problem is escalating
and needs prompt intervention.

Despite providing only good proxies of the actual end
goals—i.e. root causes and solving actions—, this rapid
analysis already points to actionable insights regarding
where and what faults occur and whether they represent a
real concern. Notice that one can draw similar conclusions
by looking separately at the site transfer efficiency and the
most frequent unique strings or patterns. However, observ-
ing high failure rates for Site-4 only answers to where
the faults occur. Likewise, the information contained in the
errors only relates to the what part of the question. Thus,
both approaches would lead to partial conclusions and
require additional investigations to reach the same result.

Conversely, our approach addresses the two tasks
together, thus letting the conclusion emerge rapidly and
naturally. A further advantage is that one can leverage both
site and pattern information for more precise indications. For
instance, one could hypothesize that not only is Site-4
experiencing a problem, but the issue is limited to incom-
ing connections. Indeed, Site-4 is involved only as a des-
tination, and the error patterns point to something related
to destination overwrite. Therefore, the previous
advantages show how shifting from the current site-centric
focus to a hybrid strategy based on error messages and aux-
iliary information is beneficial.

In addition to the practical usage of our pipeline, the
results illustrated in Figs. 5 and 6 expose interesting insights
about what the models are actually learning. For instance,
the substantial reduction observed passing from errors to
patterns suggests that the pipeline has learned something
similar to an abstraction mechanism. Indeed, the raw
error strings of cluster 0 differ only by the $URL and
$ADDRESS parameters (see message column). Although
one may argue that the same could be obtained using a flex-
ible parsing strategy, the superiority of our approach is even
more evident in cluster 6 (Fig. 5). In this case, the
clustering joins two patterns with a far less straightforward
linkage. In fact, this result appears to resemble the human
association that connection timed out (first pat-
tern) may be linked to a service busy connection
limit exceeded (second and third) problem. Notably,

this is a much higher level of abstraction with respect to a
smart parsing approach, and it goes way beyond what one
could achieve based on good abstraction heuristics. Clearly,
this property is highly desirable in practice, as it testifies
that the approach produces a good embedded representation
and recognizes the similarity of messages sharing similar
content. In particular, this holds not only up to some para-
metric parts but also in terms of their actual meaning. In
turn, this observation corroborates the initial design choice
of applying minimal pre-processing and letting the model
learn by itself.

Another clear example of success is provided by the
cluster 3 (Fig. 5), where the visualization makes it
immediate for the operator to understand that the issue is
related to a missing file (no such file or direc-
tory) at Site-12.

However, our pipeline comes also with some limita-
tions (Fig. 6). For instance, the two patterns reported in
cluster 4 show a more vague connection that would
require more in-depth investigation. As a matter of fact, they
seem to be linked due to a generic server responded
with an error which is a very generic incipit to several
error strings. Apart from that, the error codes are different
([3021] vs [3010], which may imply the clustering is
too coarse and a more refined distinction is needed. Also, the
messages point to seemingly extraneous issues (storage vs
authentication). Such observations expose two limitations.
On the one hand, tuning the pipeline to meet the desired
level of granularity when separating different groups is
extremely complex. On the other hand, this behavior may
be due to the difficulty in comparing longer strings (first and
second patterns) with short-text (third).

Another drawback is related to how outliers are handled.
The k-means algorithm is bounded to the specified num-
ber of clusters, k, which sets the number of output groups
irrespectively of the underlying structure of the data. As
a result, the outliers are often incorporated into the closer
cluster. When the latter is big enough, they probably pass
undetected as they are dispersed into a heap of other mes-
sages. However, they may contaminate other clusters when
the affected group has a comparable size, as in the case of
second and third patterns in cluster 2.

Table 2 GGUS pre-validation

Summary of the cross-check between clusters and incidents reported in GGUS. Most of the groups discov-
ered are linked to reported issues, with only 3 false positives and 1 false negative

N. clusters ASW WSSE Perfect match Fuzzy match Partial match False positives False negatives

15 0.89 17107 7 3 2 3 1

Extensive testing using incidents reported
in GGUS as a benchmark (17 days window)
• overlapping between discovered clusters

and the reported issues

Risultati del clustering
dei messaggi d’errore

Clusters on day 1

Number of processes Number of processes

Clusters on day 5

The variation of
the daily number
of clusters and
clustered error
messages could
give more
information on
the cause of the
problem

Analysis performed on a 7 days interval
Dataset (daily log files) from INFN-CNAF
StoRM system

Messages of a single log file are grouped by
StoRM process (separately for explicit error
messages) and then passed to the clustering
pipeline

Higher values of the optimal number of
clusters may give a hint of an anomaly
(day 5 in this example)

Optimal number of clusters (daily)

 Computing and Software for Big Science (2022) 6:16

1 3

16 Page 8 of 15

15 is preferred to limit the number of suggested issues and
minimize the operators effort.

Cluster Description

The last stage of the pipeline is the cluster description. This
step is fundamental to present the results in the most intel-
ligible and immediate format for end-users. Indeed, given
the unsupervised learning approach adopted, the interpreta-
tion of the clustering output resorts to the manual inspec-
tion of each group’s content. This, in turn, potentially means
reading hundreds of error strings, comparing the source and
destination information, and spotting suspect time patterns.
Therefore, producing a nice and compact visualization of
the results is paramount to make the approach effective and
avoid excessive manual checks by the operators. For this
reason, the clustering results are summarized into two com-
plementary outputs that are presented to the operators.

First, the summary table Figs. 5 and 6 represents the
most important and informative visualization. This output
is obtained by a first pre-aggregation of the clusters and
is organized in a tabular format. The first three columns
provide numeric summaries concerning the cluster size,
the number of unique strings within each group, and the
corresponding number of unique patterns. The latter is

12 15 20 30
5k

10k

15k

20k

25k

0.86

0.88

0.9

0.92

0.94

Weighted Sum of Squared Errors Average Silhouette Width
k

W
SS

E

AS
W

Fig. 4 Optimization of k. The plot shows the value of the WSSE and
ASW metrics as a function of the number of clusters, k. The hexago-
nal markers indicate the optimal values, which correspond to k = 30
for both indicators

ID

cluster
size # strings # patterns

Top 3

message n % source
rcsite

destination
rcsite

0 819465 117 14

destination overwrite srm-ifce err communication error on send err [se][srmrm][]
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing
context gss major status authentication failed gss minor status error chain
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could
not verify credential globus_gsi_callback_module could not verify credential
globus_gsi_callback_module the certificate has been revoked serial number = 1
(0xfffffffffff

85545 10.44% Site-1 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][]
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing
context gss major status authentication failed gss minor status error chain
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could
not verify credential globus_gsi_callback_module could not verify credential
globus_gsi_callback_module the certificate has been revoked serial number = 1
(0xfffffffffff

84453 10.31% Site-2 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][]
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing
context gss major status authentication failed gss minor status error chain
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could
not verify credential globus_gsi_callback_module could not verify credential
globus_gsi_callback_module the certificate has been revoked serial number = 1
(0xfffffffffff

77410 9.45% Site-3 Site-4

6 9673 347 60

source srm_get_turl srm-ifce err connection timed out err [se][statusofgetrequest]
[etimedout] \$URL /srm/managerv2 user timeout over 1838 19.00% Site-22 Site-46

transfer globus_ftp_client the server responded with an error 421 service busy
connection limit exceeded please try again later closing control connection 522 5.40% Site-33 Site-47

transfer globus_ftp_client the server responded with an error 421 service busy
connection limit exceeded please try again later closing control connection 300 3.10% Site-29 Site-47

3 34183 1568 1537

error reported from srm_ifce 2 [se][ls][srm_invalid_path] no such file or directory 13118 38.38% Site-12 Site-35

error reported from srm_ifce 2 [se][ls][srm_invalid_path] no such file or directory 9333 27.30% Site-12 Site-17

error reported from srm_ifce 2 [se][ls][srm_invalid_path] no such file or directory 1707 4.99% Site-12 Site-22

$ADDRESS$URL L

$URL L $ADDRESS

$URL L $ADDRESS

117 14

9673 347 60

connection timed out

service busy
connection limit exceeded

service busy
connection limit exceeded

destination overwrite

authentication failed

could not verify credentia
the certificate has been revoked

Site-4

Site-4

Site-4

[srm_invalid_path] no such file or directory Site-12

Site-12

Site-12

819465

Fig. 5 Summary table: successes. The figure illustrates the main
achievements of the pipeline. Cluster 3 provides immediately clear
indication of the error type, i.e. message, and where it occurs

(green). The others also suggest the approach is actually learning to
understand message parameters and message semantic (yellow, clus-
ters 0 and 6)

All the data transfer processes are tracked in
log files produced by the various services
involved and such log files represent a source
of information which is largely underutilized

Computing and Software for Big Science (2022) 6:16

1 3

Page 5 of 15 16

descriptions are extracted by searching common textual pat-
terns and key phrases for all messages belonging to the same
cluster.

The advantage of text-based pipelines is that the textual
information can aid system experts finding root causes and
explanations which are harder to grasp from the amount of
logging activity alone. However, the above methods require
significant pre-processing that may need deep customization
for specific data, which hampers their adaptation to novel
use cases with possibly diverse logging conventions, termi-
nology and structure. Furthermore, no additional informa-
tion (e.g. site, time pattern) is leveraged apart from the text
itself, which limits their practical impact.

Contribution

The goal of this work is to discuss a complementary
approach to support current DDM operations for grid moni-
toring based on a computer-aided strategy independent of
experiment-specific settings. In particular, we propose a
pipeline that takes into account FTS error messages, source
and destination hostnames, and time patterns. Unsupervised
machine learning techniques are then leveraged to identify
clusters of similar failures that act as suggestions of potential
issues for on-duty operators. Also, we perform a post-mor-
tem analysis to test our approach in a real-world scenario,
showing that: (i) our approach is able to find groups of simi-
lar errors and (ii) the proposed visualization enables to spot
quickly what failures are more frequent, where they occur
and whether their time trend is of concern. Furthermore, we
compare our results with service tickets and show how the
highlighted clusters reflect the issues reported by the opera-
tors. Finally, we provide a full, scalable implementation3
developed in compliance with the Operational Intelligence
software framework4 to allow fast integration and testing by
the whole LHC community.

Methods

The pipeline proposed in this work comprises an initial pre-
processing step followed by the vectorization, clustering
and description stages. Figure 3 reports a diagram that sum-
marizes our workflow from the initial error message to the
final outputs, and the next subsections provide a thorough
description of each of the stages.

Pre-Processing

Our approach applies minimal pre-processing to limit hard-
coded feature engineering and let the subsequent vectoriza-
tion stage figure out linguistic features of the error mes-
sages—e.g. grammar, syntax, lexicon and semantic—on its
own. The rationale behind this choice is that the resulting
representation should be more expressive, thus better mod-
eling the semantic of the messages and easing the successive
clustering phase.

With this goal in mind, the raw error strings are first
transformed to lowercase and enriched by appending the
source and destination hostnames. In particular, both host-
names are inserted at the end of each message with pre-
pended src_ or dst_ prefixes to distinguish whether
they were involved as source or destination, respectively.
The resulting text then undergoes a process of quantiza-
tion whereby the raw strings are decomposed into unitary
pieces of information. This process is commonly referred
to as tokenization and the resulting atomic units are called
tokens. In our case, we resort to whitespace tokenization for
the sake of simplicity, which means individual words are

Summary
table

Time plot

Vectorization

Clustering

Post-processing

Impossible to connect to
$URL /srm/managerv2 :
server responded with an
error [3010] login failed

[“impossible”, “connect”,
“hostname01:8443”,
“/srm/managerv2”, “server”,
“error”, “[3010]”, “login”,
“failed”]

Pre-processing

Impossible to connect to
hostname01:8443/srm/managerv2
: server responded with an error
[3010] login failed

Error message

Fig. 3 Pipeline diagram. The error message is first pre-processed and
split into tokens (1). Then, the vectorization stage transforms the tex-
tual information into numeric data (2). The next step is clustering,
where similar error messages are grouped (3). Finally, the messages
are post-processed to get common patterns (4) and the resulting clus-
ters are presented to the operators in the form of a summary table and
time evolution plots

3 https://l. infn. it/ opint- pyspa rk.
4 https://l. infn. it/ opint- frame work.

Figura 4.20: Occupazione dei cluster per i messaggi d’errore del giorno 08/03/2020

Se si va a confrontare il grafico del giorno 9 (Fig. 4.21) con quelli dei due giorni
precedenti si nota che sono presenti gli stessi cluster del giorno 7, ma con delle occupazioni
relative molto di↵erenti, infatti il giorno 7 solo un cluster aveva un’occupazione molto
elevata, mentre il giorno 9 sono presenti tre cluster con occupazione elevata.

38

mailto:lorenzo.rinaldi@unibo.it
https://doi.org/10.1007/s41781-022-00089-z

