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Storage Logical Architecture

The ATLAS EventIndex
Is the catalogue of all ATLAS real and simulated events.
● Deployment and Operation of the ATLAS 
EventIndex for LHC Run 3 describes its architecture.

● This poster is about its data collection, its data 
storage, and their evolution for Run 3.

The Data Collection
Is the process that: 
1) Extracts the metadata to index.
2) Validates it, assuring correctness and completeness.
3) Loads the metadata into the EventIndex back-end.

● Event Records:

~533 Billion
● Files indexed:

~32 Million
● Datasets indexed:

~279,000

EventIndex Records

Evolution
1/ Original Implementation at the beginning of Run 2:
● Back-end based on HDFS files organized per dataset.
● Data Collection exclusively based on messaging from 
producers to consumers.
● Cumbersome.
● Production is not re-playable.

2/ ObjectStore Implementation for Run 2:
● The Data Collection Supervisor is introduced to 
orchestrate the whole data collection.
● Accountability of data collection and validation.

● Amazon-S3-like ObjectStore at CERN replaces pure 
messaging architecture.
● Simple and scalable.
● Production can be stored, backed up, and replayed.

3/ HBase/Phoenix Implementation for Run 3:
● Back-end based on HBase, compatible with Phoenix.

● Improved data structures.
● Simplified management.
● Has a SQL interface.

● Spark/Scala Loaders replace consumers.
● Better performance.
● Improved scalability and adaptability.
● Open Source Industry standards.

Data Flow of Data Collection

even ts

ds pid : in teger
ds ty peid : s m allin t
ev entno : bigint
s eq : s m allin t

a .tid  : in teger
a.s r : binary (32)
a.m c c  : integer
a.m c w  : float

b.pv : binary(34) ARRAY[]

c .lb  : in teger
c .bc id : integer
c .lps k  : integer
c .e tim e : tim es tam p
c .id  : in teger
c .tbp  : s m allin t[]
c .tap  : s m allin t[]
c .tav  : s m allin t[]

d .lb1  : in teger
d.bc id1 : integer
d.hps k  : integer
d .lph  : s m a llin t[]
d .ph  : s m a llin t[]

Event Record Table

Very optimized primary key
● Balanced use of all regions and region servers.
● Locality of events of each dataset: 

dspid and dstypeid identify datasets.
● Locality of derivations for overlaps:

Same dspid, different dstypeid.
● Seq is a CRC16 to record duplicates, if any.

Compact
● Primary key is small, 128 bits, and identifies the 
dataset with a pair of numbers, no names.

● Trigger stored as smallint arrays, no names.

Families to read just what is needed on each 
use case:
a) For event picking.
b) For provenance.
c) For L1 trigger operations (count, overlap,…).
d) For L2 and HLT trigger operations.

Compatible with Phoenix but without using 
its exclusive features.
● Depend only on HBase, but not on Phoenix.

canonical

d a ta se ts

dstypes even ts trigmenu

NoSQL: 
Relations are inferred

but not enforced.

Event Record Primary Key
● Dataset names are too long.

● Use artificial dataset identifiers instead.
● dspid and dstypeid are generated by the supervisor by 
means of the autoincremental feature of its RDBMS.

● Monotonically increasing keys are 
undesirable in HBase.
● Reverse the bits of dspid to populate 
all the key space uniformly.

● Reserve the first bit to distinguish 
between data and mc.

● Reserve bits 2 to 4 for versioning.

Phoenix Loaders and Importers
Write the EventIndex data into HBase/Phoenix event table.
● Scala with Spark using Resilient Distributed Dataset API.

● Lazy
● In phases
● High parallelism
● Resilient
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