

HBase / Phoenix-based
Data Collection and Storage for the ATLAS EventIndex

Carlos García Montoro1*, Javier Sanchez1,
Dario Barberis2, Santiago González de la Hoz1, José Salt1

1Instituto de Física Corpuscular (IFIC) CSIC – University of Valencia, Valencia, Spain
2University of Genoa; INFN Genoa, Italy

*Corresponding Author

MICINN supported this work under grant PID2019-104301RB-C21

Storage Logical Architecture

The ATLAS EventIndex
Is the catalogue of all ATLAS real and simulated events.
● Deployment and Operation of the ATLAS
EventIndex for LHC Run 3 describes its architecture.

● This poster is about its data collection, its data
storage, and their evolution for Run 3.

The Data Collection
Is the process that:
1) Extracts the metadata to index.
2) Validates it, assuring correctness and completeness.
3) Loads the metadata into the EventIndex back-end.

● Event Records:

~533 Billion
● Files indexed:

~32 Million
● Datasets indexed:

~279,000

EventIndex Records

Evolution
1/ Original Implementation at the beginning of Run 2:
● Back-end based on HDFS files organized per dataset.
● Data Collection exclusively based on messaging from
producers to consumers.
● Cumbersome.
● Production is not re-playable.

2/ ObjectStore Implementation for Run 2:
● The Data Collection Supervisor is introduced to
orchestrate the whole data collection.
● Accountability of data collection and validation.

● Amazon-S3-like ObjectStore at CERN replaces pure
messaging architecture.
● Simple and scalable.
● Production can be stored, backed up, and replayed.

3/ HBase/Phoenix Implementation for Run 3:
● Back-end based on HBase, compatible with Phoenix.

● Improved data structures.
● Simplified management.
● Has a SQL interface.

● Spark/Scala Loaders replace consumers.
● Better performance.
● Improved scalability and adaptability.
● Open Source Industry standards.

Data Flow of Data Collection

even ts

ds pid : in teger
ds ty peid : s m allin t
ev entno : bigint
s eq : s m allin t

a .tid : in teger
a.s r : binary (32)
a.m c c : integer
a.m c w : float

b.pv : binary(34) ARRAY[]

c .lb : in teger
c .bc id : integer
c .lps k : integer
c .e tim e : tim es tam p
c .id : in teger
c .tbp : s m allin t[]
c .tap : s m allin t[]
c .tav : s m allin t[]

d .lb1 : in teger
d.bc id1 : integer
d.hps k : integer
d .lph : s m a llin t[]
d .ph : s m a llin t[]

Event Record Table

Very optimized primary key
● Balanced use of all regions and region servers.
● Locality of events of each dataset:

dspid and dstypeid identify datasets.
● Locality of derivations for overlaps:

Same dspid, different dstypeid.
● Seq is a CRC16 to record duplicates, if any.

Compact
● Primary key is small, 128 bits, and identifies the
dataset with a pair of numbers, no names.

● Trigger stored as smallint arrays, no names.

Families to read just what is needed on each
use case:
a) For event picking.
b) For provenance.
c) For L1 trigger operations (count, overlap,…).
d) For L2 and HLT trigger operations.

Compatible with Phoenix but without using
its exclusive features.
● Depend only on HBase, but not on Phoenix.

canonical

d a ta se ts

dstypes even ts trigmenu

NoSQL:
Relations are inferred

but not enforced.

Event Record Primary Key
● Dataset names are too long.

● Use artificial dataset identifiers instead.
● dspid and dstypeid are generated by the supervisor by
means of the autoincremental feature of its RDBMS.

● Monotonically increasing keys are
undesirable in HBase.
● Reverse the bits of dspid to populate
all the key space uniformly.

● Reserve the first bit to distinguish
between data and mc.

● Reserve bits 2 to 4 for versioning.

Phoenix Loaders and Importers
Write the EventIndex data into HBase/Phoenix event table.
● Scala with Spark using Resilient Distributed Dataset API.

● Lazy
● In phases
● High parallelism
● Resilient

SPBDataSource

.union()

.take(10)

.map()

++

.filter() .drop()

1

.write()

.coallesce() .write()

7

8 9

2

3

4 5 6

	Slide 1

