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using this data to optimize and tune our service configurations.

cinfo File Structure Understanding Monitoring Data

Start of file with fixed structure

File meta-data To verify monitoring metrics broadcast from XRootD, a new logging approach was developed at Edinburgh.
Leading blocks in file contain This made use of the on-disk .cinfo metadata files stored within the XRootD-PFC.
T e Capturing changes to these files, when the metadata is written to disk, provides a monitoring stream

creation time.

constructed as a cross-check of the messages broadcast by XRootD streams and read by multiple parsers.
Fixed start, variable length

Block Map "block-map"

Section describing the blocks
which have been stored within the

cache for this file in XRootD-PFC

Analyzing this data revealed unique insights over earlier studies:

* Granularity for site-specific XRootD-PFC is extremely coarse.

'ﬁ Grid jobs keep files open for long periods with fileClose events occurring 24hr+ after data transfers.

Last-2 FileAccess

* Granularity isn’t enough to explain differences between node_exporter and XRootD monitoring data.
 Both XRootD and node_exporter can allow for finding and fixing service mis-configurations.

Vector of If either the PFC blocksize and prefetch settings were mis-configured both XRootD and node exporter
wﬁﬁecﬁe:nsf?.‘;%%sse show the XRootD-PFC service leads to an amplification of data required to be transferred from site storage.

Last-1 FileAccess

Combining monitoring metrics from multiple sources was possible using the Edinburgh Tier2 monitoring
stack as presented elsewhere.

Last FileAccess : : : : : :
| Using this, we have shown there is a consistent difference between XRootD and node exporter metrics.

Metadata of fileAccess including data such
as readCount and attach and close times.
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Isolated testing \

Isolated testing of an XRootD PFC instance using containers allowed us to analyze the
behavior of the monitoring under different situations.

: ) ) i ) Data egressed from XRootD-PFC
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Protocol Used for transfer

Python CopyProcess, 10G source
== XRootD-PFC host (node_exporter) {name="RAL Stream Parser (Python3)"} {name="0SG Stream Parser (Python2)"}

xrdcp, 1G source == XRootD-PFC Monitor (cinfo-extractor)

Python CopyProcess, 1G source

Python File::vector_read (1G,10G,20G source)
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