
0.9 0.95 1 1.05 1.1 1.15

Python File::read (1G,10G,20G source)

Python File::vector_read (1G,10G,20G source)

Python CopyProcess, 1G source

xrdcp, 1G source

Python CopyProcess, 10G source

xrdcp, 10G source

Python CopyProcess, 20G source

xrdcp, 20G source

Ratio

Pr
ot

oc
ol

 U
se

d
fo

r t
ra

ns
fe

r

Ratio of Data Transferred (cinfo metadata) vs fileSize

Exploring XRootD-PFC Optimizations
Using Advanced Monitoring in the UK

Understanding Monitoring Data

Background

Further Analysis Conclusions

As presented at previous CHEP conferences there is a disjoint
between egress rates broadcast from XRootD and raw monitoring metrics
extracted from host monitoring.

To determine the source of these differences additional studies were
identified as needed.

As well as working to understand these differences we have also explored
using this data to optimize and tune our service configurations.

Robert Currie (rob.currie@ed.ac.uk), Wenlong Yuan (wenlong.yuan@ed.ac.uk)

100% 109%

≠

After verifying the performance of different monitoring methods,
we started to begin to analyze the performance of our XRootD-PFC
service.

Using tooling built for verifying monitoring metrics, we discovered
it is possible to categorize the behavior and performance of our
XRootD-PFC in production based upon the filetype information
alone extracted from the filename as shown when we examine the
accessTime vs fileSize.

Using this we know we can improve the cache performance by not
caching files which are just transferred through the cache and that
are not repeatedly accessed.

Files accessed over long periods from the cache also tend to have
more complex access patterns whilst the connection is open for
the full lifetime of a grid job.

Broadcast XRootD data egress Egress data from node_exporter

To verify monitoring metrics broadcast from XRootD, a new logging approach was developed at Edinburgh.
This made use of the on-disk .cinfo metadata files stored within the XRootD-PFC.
Capturing changes to these files, when the metadata is written to disk, provides a monitoring stream
constructed as a cross-check of the messages broadcast by XRootD streams and read by multiple parsers.

Analyzing this data revealed unique insights over earlier studies:

• Granularity for site-specific XRootD-PFC is extremely coarse.
Grid jobs keep files open for long periods with fileClose events occurring 24hr+ after data transfers.

• Granularity isn’t enough to explain differences between node_exporter and XRootD monitoring data.
• Both XRootD and node_exporter can allow for finding and fixing service mis-configurations.

If either the PFC blocksize and prefetch settings were mis-configured both XRootD and node_exporter
show the XRootD-PFC service leads to an amplification of data required to be transferred from site storage.

Combining monitoring metrics from multiple sources was possible using the Edinburgh Tier2 monitoring
stack as presented elsewhere.
Using this, we have shown there is a consistent difference between XRootD and node_exporter metrics.

File meta-data
Leading blocks in file contain
fixed metadata describing file
such as file-size, block-size and
creation time.

Block Map
Section describing the blocks
which have been stored within the
cache for this file in XRootD-PFC

Start of file with fixed structure

Fixed start, variable length
"block-map"

Vector of
fileAccess events
written on fileClose

Last FileAccess

Metadata of fileAccess including data such
as readCount and attach and close times.

Last-1 FileAccess

...

Last-2 FileAccess

...

.cinfo File Structure

.cinfo files updated à Python inode watcher à (tcp) à OpenSearch
XRootD Stream broadcast à (udp) à … à LogStash à ElasticSearch
node_exporter à (tcp) à Prometheus

Isolated testing
Isolated testing of an XRootD PFC instance using containers allowed us to analyze the
behavior of the monitoring under different situations.
This has revealed that when copying a file using xrdcp or CopyProcess there is an
over-reporting of the amount of data transferred by ~10%.
This appears to match with what we see in production.
This is not observed when reading data using simple read functions in PyXRootD.

Further investigations are needed to understand this in more detail.

Through analyzing the data from our XRootD-PFC
instance we have understood some of the major
differences between our monitoring metrics and our
network monitoring.

This has shown our monitoring of PFC performance in
with production jobs has to be performed with the
granularity of whole job lifetimes.

Further work is needed to explore why data transfers
are being over-reported within XRootD-PFC in our
containerized isolated test setup.

We have shown that we are able to tune and improve
the performance of our cache by understanding the
behaviors of different access patterns relating to
different file types.

