Exploring XRootD-PFC Optimizations
Using Advanced Monitoring in the UK

Robert Currie (rob.currie@ed.ac.uk), Wenlong Yuan (wenlong.yuan@ed.ac.uk)

THE UNIVERSITY
of EDINBURGH

Background

Data egressed from XRootD-PFC v Data egressed from XRootD-PFC v
As presented at previous CHEP conferences there is a disjoint |
between egress rates from XRootD and raw monitoring metrics M |
extracted from |
é 8001 :: g o | \\\\\ /’}ﬂ {
. . i . e L[f“\
To determine the source of these differences additional studies were g mowe | (w\ " g\\ /,/\ | \ , /\;
. o fo 400 Mb \“ ‘ I e | /‘}g \ ‘\ \ \ o
identified as needed. e M) \w/\ | L\ I / I / |
200 Mb “ / V \‘l\ M& Y ‘ﬁ\q;\//\\ \x’\\,) \sd}m | f@z—\\;”‘ \t | \ A ,/ \ ‘/“"‘\3\‘] "\ \\ f{
ob \‘\J}\, //”\\\/’//‘//?\‘gx/ \‘ o /~/f‘r’\$ p v \\‘“ ™ LN ﬂkﬁs;j// "1 u/‘M J}/ ‘\\“/}J/ ‘\‘\7:};} A \\/
. . ob 03118 03120 03/22 03/24 03/26 03/28 03/18 03/20 03/22 03/24 03/26 03/28
As well as working to understand these differences we have also explored - / ame 050 Ssam Parser Gyt ’ | = XR0otD-PFC nost (nede.exporer

using this data to optimize and tune our service configurations.

cinfo File Structure Understanding Monitoring Data

Start of file with fixed structure

File meta-data To verify monitoring metrics broadcast from XRootD, a new logging approach was developed at Edinburgh.
Leading blocks in file contain This made use of the on-disk .cinfo metadata files stored within the XRootD-PFC.
T e Capturing changes to these files, when the metadata is written to disk, provides a monitoring stream

creation time.

constructed as a cross-check of the messages broadcast by XRootD streams and read by multiple parsers.
Fixed start, variable length

Block Map "block-map"

Section describing the blocks
which have been stored within the

cache for this file in XRootD-PFC

Analyzing this data revealed unique insights over earlier studies:

* Granularity for site-specific XRootD-PFC is extremely coarse.

'ﬁ Grid jobs keep files open for long periods with fileClose events occurring 24hr+ after data transfers.

Last-2 FileAccess

* Granularity isn’t enough to explain differences between node_exporter and XRootD monitoring data.
 Both XRootD and node_exporter can allow for finding and fixing service mis-configurations.

Vector of If either the PFC blocksize and prefetch settings were mis-configured both XRootD and node exporter
wﬁﬁecﬁe:nsf?.‘;%%sse show the XRootD-PFC service leads to an amplification of data required to be transferred from site storage.

Last-1 FileAccess

Combining monitoring metrics from multiple sources was possible using the Edinburgh Tier2 monitoring
stack as presented elsewhere.

Last FileAccess : : : : : :
| Using this, we have shown there is a consistent difference between XRootD and node exporter metrics.

Metadata of fileAccess including data such
as readCount and attach and close times.

-~

o

Isolated testing \

Isolated testing of an XRootD PFC instance using containers allowed us to analyze the
behavior of the monitoring under different situations.

:)) i) Data egressed from XRootD-PFC
This has revealed that when copying a file using xrdcp or CopyProcess there is an

over-reporting of the amount of data transferred by ~10%. 450 Mb
This appears to match with what we see in production. 400 Mb XRootD Stream broadcast = (udp) =2 ... 2 LogStash = ElasticSearch
This is not observed when reading data using simple read functions in PyXRootD. 350 Mb
t=
: : ~ 300Mb
Further investigations are needed to understand this in more detail. g
T 250 Mb
. . . . %’) 200 Mb / 5/5
Ratio of Data Transferred (cinfo metadata) vs fileSize Y rsown / e NN
a /4 / |\ —
xrdcp, 20G source 100 Mb Y 4) /// ;\
— g yd \ e —
Python CopyProcess, 20G source 50 Mb \:\:::?;:1::?;:1‘.:,,,,,, P /7 d \- ——
xrdcp, 10G source 0b TT~—"
03/18 03/20 03/22 03/24 03/26 03/28

Protocol Used for transfer

Python CopyProcess, 10G source
== XRootD-PFC host (node_exporter) {name="RAL Stream Parser (Python3)"} {name="0SG Stream Parser (Python2)"}

xrdcp, 1G source == XRootD-PFC Monitor (cinfo-extractor)

Python CopyProcess, 1G source

Python File::vector_read (1G,10G,20G source)

100%

0.9 0.95 1 1.05 1.1 1.15
Ratio

Python File::read (1G,10G,20G source)

Conclusions

@
/ Further Analysis 8‘ B
.| %00 Through analyzing the data from our XRootD-PFC
After verifying the performance of different monitoring methods, 4 g . «Eé:f instanie we hyavegunderstood some of the major
we started to begin to analyze the performance of our XRootD-PFC uf [R differences between our monitoring metrics and our
service. 8 o |1 e O A network monitoring.
— e plobblh groug
Using tooling built for verifying monitoring metrics, we discovered S s, . N This has shown our monitoring of PFC performance in
it is possible to categorize the behavior and performance of our g | with production jobs has to be performed with the
XRootD-PFC in production based upon the filetype information g4 . granularity of whole job lifetimes.
alone extracted from the filename as shown when we examine the g K
accessTime vs fileSize. S 3 > o° Further work is needed to explore why data transfers
g | are being over-reported within XRootD-PFC in our
Using this we know we can improve the cache performance by not . r_ containerized isolated test setup.
caching files which are just transferred through the cache and that N _
are not repeatedly accessed. N We have shown that we are able to tune and improve
o ||| o the performance of our cache by understanding the
Files accessed over long periods from the cache also tend to have N " | % 3 o o behgviors of different access pa’zicerns relating tgo
more complex access patterns whilst the connection is open for | | | | | | different file types.
10° 10} 102 10° 10* 10°

the

full lifetime of a grid job.

AccessTime (s)

