
XRootD Client: a robust technology for LHC Run-3 and beyond
G. Amadio1, C. Caffy1, A. B. Hanushevsky2, M. K. Simon1, D. Smith1 for the XRootD Development Team

1CERN, 2SLAC

Introduction

The challenges for Run-3 of the LHC, which began in 2022, include
managing the massive amounts of data generated by the experi-
ments and ensuring their efficient storage, access, and analysis. In
order to address these challenges, XRootD is nowwidely used by the
HEP community. XRootD supports multiple data access models, in-
cluding hierarchical, file-based, and object-based access, and it can
operate on various types of storage systems, including disk, tape,
and cloud storage. It is designed for scalable, high-performance, and
fault-tolerant data access, transfer, and management.

XRootD has become a critical component in the data management
strategy of the LHC along its history, which spansmore than 20 years.
In the early days, it was developed as a replacement for rootdwithin
ROOT, therefore its name. In the early 2000s, the code was moved
into its own repository, and XRootD became an independent project.

The XRootD Client

The first production version of the XRootD client, XrdClient, was
added to the repository in Sep 2004 by Fabrizio Furano. In the sec-
ond half of 2012, a newly rewritten version of the client, XrdCl, was
introduced by Lukasz Janyst. Its debut happened in XRootD 4.0, at
which point XrdClient was declared obsolete, and in XRootD 5.0 the
code was finally removed from the repository.

Early Days
XrdClient

XrdCl

v3.0 v4.0 v5.0

2000 2004 2008 2012 2016 2020 2022

The XRootD client is themain tool used to transfer experimental data
into and out of the data center at CERN. In 2022, over 570 PB of data
have been written into EOS physics instances by the main LHC ex-
periments. The XRootD protocol accounted for the majority of this
amount, as it can be seen in the statistics data shown below.

Data Written to EOS Physics Instances in 2022

XRootD

HTTP

FUSE

GridFTP

477 PB

88.5 PB

6.20 PB

3.54 PB

Data Read from EOS Physics Instances in 2022

XRootD

FUSE

HTTP

GridFTP

2.39 EB

1.22 EB

155 PB

14.6 PB

Whilst the volume of data written is already massive, it is dwarfed
by the amount of data read for analysis. In the same year of 2022,
about 3.78 EB of data have been read from the data center, 2.4 EB of
which using the XRootD protocol, either by the standalone XRootD
client, xrdcp, or via XRootD client code integrated into other appli-
cations, such as ROOT.Moreover, since the EOS FUSE client also relies
on the XRootD client code in its implementation, it means that reads
via FUSE are also served by XRootD.

XRootD Client Primer

The standalone client for transferring data via the XRootD protocol is
xrdcp. Below we demonstrate how to use some of its main features.

Basic Usage
Copy local file to a remote server
$ xrdcp file.root root://example.cern.ch//path/to/destination/
Copy remote file to the local disk
$ xrdcp root://example.cern.ch//path/to/source/file.root .
Third-party copy, client triggers copy from server to server
$ xrdcp --tpc only root://src.cern.ch/file.root root://dest.cern.ch/data/
Copy while preserving extended file attributes
$ xrdcp --xattr root://src.cern.ch//file root://dst.cern.ch//path/
Retry if an error occurs
$ xrdcp --retry root://src.cern.ch//file root://dst.cern.ch//path/
Continue timed out transfer
$ xrdcp --continue root://src.cern.ch//file root://dst.cern.ch//path/
Limit maximum transfer rate to 150MB/s
$ xrdcp --xrate 150m root://src.cern//file root://dst.cern//path/
Ensure minimum transfer rate of 50MB/s
$ xrdcp --xrate-threshold 50m root://src.cern//file root://dst.cern//path/

Encryption with TLS
Enable encryption by using roots:// or xroots:// protocol
$ xrdcp roots://example.cern.ch//path/to/file .
Encrypt only the control channel, data is not encrypted
$ xrdcp --tlsnodata roots://example.cern.ch//path/to/file .
Allow falling back to no encryption, for backward compatibility
$ xrdcp --notlsok roots://example.cern.ch//path/to/file .
Use encryption with metalink files
$ xrdcp --tlsmetalink roots://example.cern.ch//path/to/file.meta4 .

Working with ZIP Archives
Copy file from remote ZIP archive to local disk
$ xrdcp --zip file.root root://src.cern.ch//archive.zip .
Append a local file to a remote ZIP archive
$ xrdcp --zip-append file.root root://dest.cern.ch//path/archive.zip

Erasure Coding Plugin (XrdEc) v5.2

Running the LHC is expensive, hence the possibility of data loss has
to be minimized. Traditionally, data durability has been achieved
by replicating data at CERN as well as distributing copies across the
world within the Worldwide LHC Computing Grid (WLCG). This strat-
egy, however, may become prohibitively expensive at the increased
data rates to be produced by the High-Luminosity LHC (HL-LHC). The
solution, implemented originally for EOS and later in XRootD, is to
use erasure coding to provide redundancy atmuch smaller overhead
than simple data replication. Erasure coding works by dividing data
into chunks and adding parity blocks that can be used to reconstruct
the original data in the event of hardware failure.

Erasure Coding in an Nutshell

When configured to use erasure coding, the server will automatically
split files into n data blocks and k parity blocks according to the con-
figuration and distribute each piece to a different disk or file storage
server as depicted below.

Writing Data via I/O Gateway with Erasure Coding Plugin

When reading, the data can be reconstructed either at the server, in
case the client does not have support for erasure coding enabled, or
each block can be read directly if the client has support for erasure
coding enabled. The client can also write data directly in this case.

Reading Data via I/O Gateway with Erasure Coding Plugin

Client with Erasure Coding Plugin can Read/Write Data Directly

Declarative Asynchronous API v5.0–v5.4

The declarative API for the XRootD client has been created with era-
sure coding support as its main use case. Its main objective is to sim-
plify composition of a series of asynchronous operations on one or
more remote files, such as writing a data block striped into n data
chunks and k parity chunks in parallel. The advantage of the declara-
tiveAPI is that it allows composing asynchronous operationswithout
requiring error-prone boiler plate code in the process.

using namespace XrdCl;

void ECWrite(uint64_t offset, uint64_t size, const void *buffer,
ResponseHandler *handler)

{
/* calculate number of chunks */
std::vector<Pipeline> writes(nchunks);
for (size_t i = 0; i < nchunks; ++i) {

/* calculate offset, size, and buffer for each chunk */
File f = new XrdCl::File();
Pipeline p = Open(file, url, flags)
| Parallel(Write(file, chunk_offset, chunk_size, chunk_buffer),

SetXAttr(file, ”xrdec.cksum”, checksum))
| Close(file) >> [file](XRootDStatus&) { delete file; };

}
Async(Parallel(writes) >> [handler](XRootDStatus&) {

handler->HandleResponse(new XRootDStatus(), 0);
});

}

Data Integrity (pgRead/pgWrite) v5.0–v5.5

Disk failures can cause corruption for data at rest, but transmission
errors while the network is under heavy load may also lead to data
corruption across the wire. For small file transfers, this sort of corrup-
tion is not a problem, since the cost of retransmitting the data is low
in case a checksummismatch occurs at the end of the transfer on the
destination. However, when transferring large files (>10GB), a better
mechanism is necessary. Therefore, in addition to data durability fea-
tures like erasure coding for data at rest, XRootD has also introduced
pgRead and pgWrite to ensure data integrity for data tranfers across
thenetwork. WithpgRead/pgWrite, data is checksummedat 4Kpage
boundaries, and if any transmission errors occur, only pageswithmis-
matched checksums need to be retransmitted, greatly improving re-
liablility.

Wire Layout for Data Transfers with pgRead/pgWrite

Read/write 6144 bytes at offset 0 (page aligned)

CRC32 4096 bytes (1 page) CRC32 2048 bytes

Offset 0 Offset 4096

Read/write 8000 bytes at offset 2040 (typical random I/O)

CRC32 2056 bytes CRC32 4096 bytes (1 page) CRC32 1848 bytes

Offset 2040 Offset 4096 Offset 8192

Read/write 4000 bytes at offset 2040 (degenerate case)

CRC32 2056 bytes CRC32 1944 bytes

Offset 2040 Offset 4096

Record/Replay Plugin v5.5

The recorder plugin for the XRootD client, introduced in XRootD
5.5.0, allows users to record remote data access patterns in way
that is transparent to client applications. It can be enabled by
the user by creating a configuration file in its home directory at
$HOME/.xrootd/client.plugins.d/recorder.conf with the
following contents:

url = *
lib = /usr/lib64/libXrdClRecorder-5.so
enable = true
output = /tmp/xrdrecord.csv

This configurationwill instruct the XRootD client to load the recorder
plugin and record each operation into the /tmp/xrdrecord.csv
file on disk. A simple example is shown below using ROOT to run
an RDataFrame tutorial that reads CMS opendata via XRootD.

$ root.exe -l -b -q df102_NanoAODDimuonAnalysis.C

Processing df102_NanoAODDimuonAnalysis.C...
Info in <TCanvas::Print>: pdf file dimuon_spectrum.pdf has been created
Events with exactly two muons: pass=31104343 all=61540413 eff=50.54
Muons with opposite charge: pass=24067843 all=31104343 eff=77.38

The output file can be inspected and replayed with the xrdreplay
command line tool. Without any options, it will read the CSV file and
execute again the same operations, taking care of reproducing the
timings from the original run as well. When run with the -p option,
it produces a summary of the operations performed by the client:

$ xrdreplay -p /tmp/xrdrecord.csv
===
IO Summary (print mode)
===
Sampled Runtime : 23.195940 s
Playback Speed : 1.00
IO Volume (R) : 2.24 GB [std:581.69 KB vec:2.24 GB page:0 B]
IO Volume (W) : 0 B [std:0 B vec:0 B page:0 B]
IOPS (R) : 147 [std:72 vec:75 page:0]
IOPS (W) : 0 [std:0 vec:0 page:0]
Files (R) : 18
Files (W) : 0
Datasize (R) : 40.40 GB
Datasize (W) : 0 B

Quality Estimation

Synchronicity(R) : 100.00%
Synchronicity(W) : 0.00%

In the summary above, we can see that ROOT read 2.24 GB of data in
23.2 s from the remote file, mostly using vector reads.

