

Storing LHC Data in DAOS and S3 through RNTuple

26th International Conference on Computing in High Energy and Nuclear Physics

Giovanna Lazzari Miotto – Federal University of Rio Grande do Sul (BR) Javier López-Gómez – CERN (CH)

CHEP 2023, 9 May 2023

Introduction

ROOT RNTuple

$\ensuremath{\mathsf{HL}\text{-LHC}}$ is projected to increase ROOT data at least tenfold

- New HW landscape: NVMe devices, architectural heterogeneity, parallelism, distributed facilities...
- **RNTuple** ("TTree 2.0") is optimized to accommodate this leap!

HL-LHC is projected to increase ROOT data at least tenfold

- New HW landscape: NVMe devices, architectural heterogeneity, parallelism, distributed facilities...
- **RNTuple** ("TTree 2.0") is optimized to accommodate this leap!

RNTuple goals:

- Over 2× better single-core performance
- 1 GB/s/core sustained end-to-end throughput

- 25% smaller files
- Robust interfaces and systematic use of exceptions
- ... and more: check yesterday's session! talk: RNTuple talk: RNTuple in Athena

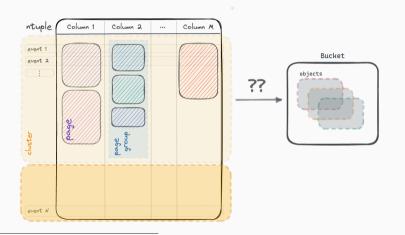
In a highly-parallel setting, object stores align well with our requirements:

- Extremely scalable
- Widely deployed in cloud service providers

Contexts: **HPC** (Intel DAOS) \neq **Cloud** (Amazon S3, Microsoft Azure, Google Cloud)

In a highly-parallel setting, object stores align well with our requirements:

- Extremely scalable
- Widely deployed in cloud service providers


Contexts: **HPC** (Intel DAOS) \neq **Cloud** (Amazon S3, Microsoft Azure, Google Cloud)

But why invest in native support? Granular parallel access

• Downside: no storage of other ROOT classes: histograms, etc.

Challenge: Mapping RNTuple \rightarrow Object Stores

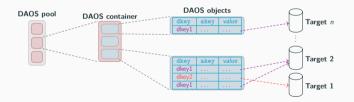
Granularity: page ~ O(KiB), page group, cluster^a ~ O(MiB)

Factors to consider

- Analysis pattern
- Throughput, latency
- Cost per

request

 Memory consumption

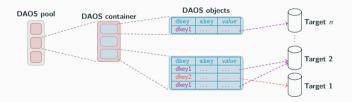

^aFor columnar access, storing clusters wholesale requires byte ranges support

Storing RNTuple data in DAOS

DAOS: Fault-tolerant object store for HPC

Foundation of the Intel exascale storage stack

- Built for NVMe and persistent memory
- Low-latency, high-bandwidth, high IOPS
- Used in 44% of the top 25 systems in IO500¹ (e.g., ANL Aurora)

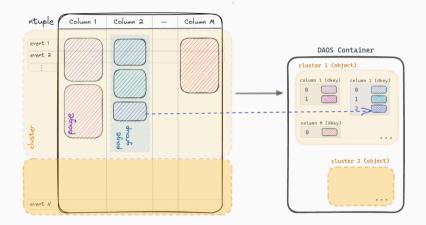

• Locality feature: $\langle object, dkey \rangle \rightarrow target$

¹https://io500.org/

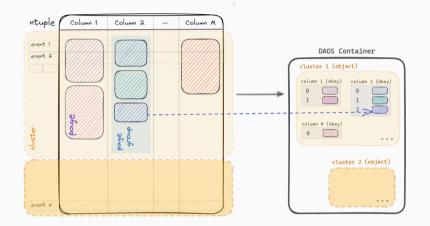
DAOS: Fault-tolerant object store for HPC

Foundation of the Intel exascale storage stack

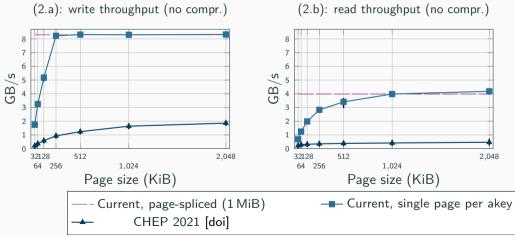
- Built RDF::Experimental::FromRNTuple("DecayTree", "daos://my-pool/my-container"
- Low-latency, high-bandwidth, high IOPS
- Used in 44% of the top 25 systems in IO500¹ (e.g., ANL Aurora)



• Locality feature: $\langle \textit{object}, \textit{dkey} \rangle \rightarrow \texttt{target}$

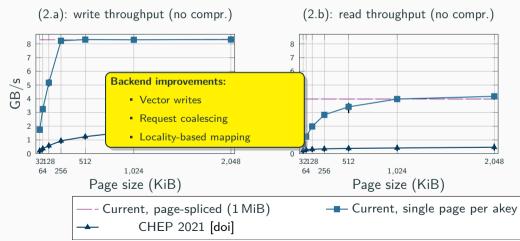

¹https://io500.org/

RNT uple $\leftrightarrow \mathsf{DAOS}$

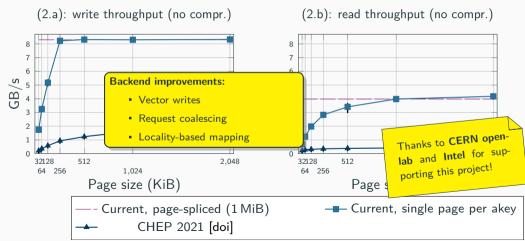

"Page splicing": empirically optimal with 1 MiB blobs (throughput \times granularity)

Storing LHC Data in DAOS and S3 through RNTuple

CHEP 2023, 9 May 2023



E2E analysis on single DAOS client-server pair (HPE's Delphi cluster w/ Infiniband interconnect)



E2E analysis on single DAOS client-server pair (HPE's Delphi cluster w/ Infiniband interconnect)

E2E analysis on single DAOS client-server pair (HPE's Delphi cluster w/ Infiniband interconnect)

Storing RNTuple data in S3

Object storage's de facto standard

Amazon S3

Object storage's de facto standard

Main differences w.r.t. DAOS:

- Flat namespace
- Worldwide server distribution across "regions" and "edges"
- Potential interop with research computing infrastructures, e.g., WLCG
- Network latency...

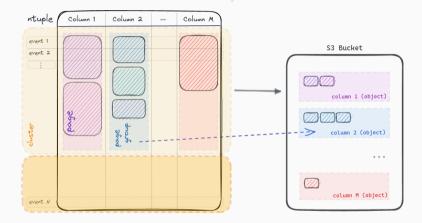
AWS edge locations and regional caches. Amazon.

Amazon S3

Object storage's de facto standard

Main differences w.r.t. DAOS:

- Flat namespace
- Worldwide server distribution across "regions" and "edges"
- Potential interop with research computing infrastructures, e.g., WLCG
- Network latency...



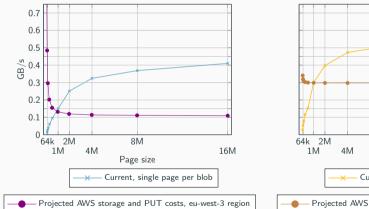
AWS edge locations and regional caches. Amazon.

RDF::Experimental::FromRNTuple("DecayTree", "s3://aws-region/my-bucket"

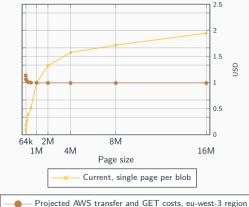
 $\textbf{RNTuple} \leftrightarrow \textbf{S3}$

Bigger blobs (page groups or clusters) may mitigate latency

Best with scatter-gather I/O, requires Range HTTP requests


Storing LHC Data in DAOS and S3 through RNTuple

CHEP 2023, 9 May 2023



E2E analysis on client-server pair (MinIO). Nodes provided by openlab and ROOT.

Plot (1.a): write costs, throughput (no compr.)

Plot (1.b): read costs, throughput (no compr.)

On data migration

- Even between two object stores!
- Moving data between storage systems requires reshaping for efficient access

Implemented

Fast cloning with field selection (like TTree's CloneTree)

Avoids page decompression unless necessary

In development

Reshaping ntuples

• Compression algorithm, page size, cluster size, ...

Summary

In conclusion

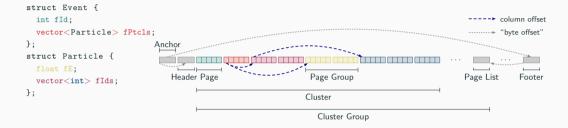
- RNTuple is set to be production-ready in late 2024, leveraging HPC and cloud object stores
 - Native, mature DAOS backend with 8+ GB/s writes, 4+ GB/s reads single-node
 - Native, experimental S3 backend
- Efficient data migration across storage systems, ntuple reshaping (WIP)

In conclusion

- RNTuple is set to be production-ready in late 2024, leveraging HPC and cloud object stores
 - Native, mature DAOS backend with 8+ GB/s writes, 4+ GB/s reads single-node
 - Native, experimental S3 backend
- Efficient data migration across storage systems, ntuple reshaping (WIP)

Next steps

- Optimize S3 backend based on first results
 - Investigate AWS' C++ SDK, retaining Davix as a compatibility fallback
- Expand RNTuple Migrator



Acknowledgements: This work benefited from support by the CERN Strategic RD Programme on Technologies for Future Experiments CERN-OPEN-2018-006 and the Intel–CERN openIab collaboration. Access to the hardware for the experimental evaluation was provided by Hewlett-Packard Enterprise.

Storing LHC Data in DAOS and S3 through RNTuple

CHEP 2023, 9 May 2023

Breakdown of the RNTuple On-Disk Format

Cluster

- Block of consecutive complete events
- Defaults to 50 MB compressed

Page

- Unit of (de-)compression
- Defaults to 64 KiB uncompressed
- Not necessarily aligned on event boundary

Format specification