

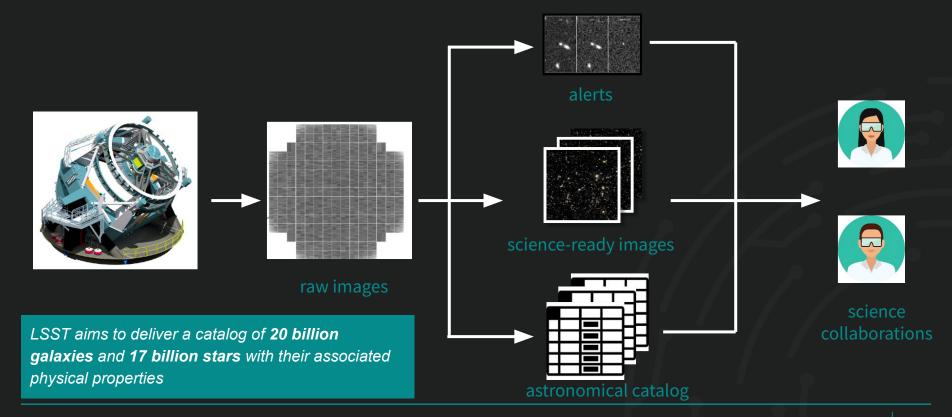
Image processing infrastructure to produce the Legacy Survey of Space and Time (LSST)

G. Beckett, P. Clark, M. Doidge, <u>F. Hernandez</u>, T. Jenness, E. Karavakis, Q. Le Boulc'h, P. Love, G. Mainetti, T. Noble, B. White, W. Yang

CHEP 2023, May 8-12, 2023

Contents

- Overview of the Legacy Survey of Space and Time (LSST)
 - O https://rubinobservatory.org
- Distributed image processing
- Ongoing work



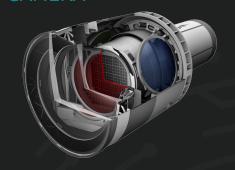
Overview of LSST

Vera C. Rubin Observatory CHEP 2023 Acronyms & Glossary

Legacy Survey of Space and Time

Legacy Survey of Space and Time (cont.)

OBSERVATORY


southern hemisphere | 2647m a.s.l. | stable air | clear sky | dark nights | good infrastructure

TELESCOPE

main mirror Ø 8.4 m (effective 6.4 m) | large aperture: f/1.234 | wide field of view | 350 ton | compact | to be repositioned about 3M times over 10 years of operations

CAMERA

3.2 G pixels $| \varnothing |$ 1.65 m | | 3.7 m long | | 3 ton | | 3 lenses | | 3.5° field of view | | 9.6 deg² | | 6 filters ugrizy | | 320-1050 nm

Source: LSST: from Science Drivers to Reference Design and Anticipated Data Products

/era C. Rubin Observatory CHEP 2023 Acronyms & Glossary

Legacy Survey of Space and Time (cont.)

Raw data

6.4 GB per exposure (compressed)
2000 science + 500 calibration images per night
20 TB per night, ~5 PB per year

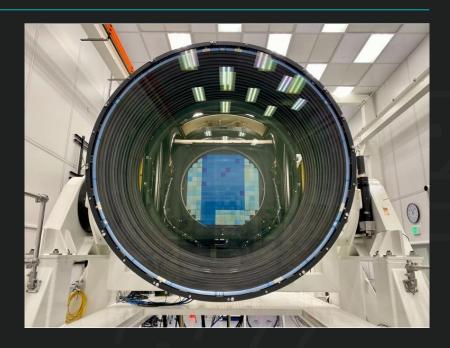

Aggregated data over 10 years of operations

image collection: ~6 million exposures

derived data set: ~0.5 EB

final astronomical catalog database: 15 PB

Operations to start early 2025

Source: Rubin Observatory System & LSST Survey Key Numbers

Distributed processing

/era C. Rubin Observatory | CHEP 2023 Acronyms & Glossary

Rubin Data Facilities

- Image processing for producing the annual data release to be performed at 3
 data facilities
 - US data facility (SLAC National Accelerator Laboratory, CA, USA) 35%
 - UK data facility (IRIS and GridPP, UK) 25%
 - French data facility (<u>CC-IN2P3</u>, Lyon, FR) 40%
- US data facility to store an integral copy of raw and published data products
 - o implies replication of the entire dataset across the Atlantic
- Connectivity among those facilities provided by ESnet (transatlantic segment from/to SLAC), GEANT (within Europe), JANET (UK) and RENATER (FR)
 - facilities specifically configured not to use LHCONE

EPO Data Center

US Data Facility SLAC, California, USA

Archive Center
Alert Production
Data Release Production (35%)
Calibration Products Production
Long-term storage
Data Access Center
Data Access and User Services

HQ Site AURA, Tucson, USA

Observatory Management
Data Production
System Performance
Education and Public Outreach

Dedicated Long Haul Networks

Two redundant 100 Gb/s links from Santiago to Florida (existing fiber) Additional 100 Gb/s link (spectrum on new fiber) from Santiago-Florida (Chile and US national links not shown)

UK Data Facility IRIS Network, UK

Long-term storage

Data Release Production (25%)

Summit and Base Sites

Observatory Operations Telescope and Camera Data Acquisition Long-term storage Chilean Data Access Center

LSST Science Pipelines

Major processing steps

- Single-frame processing
- Calibration
- Image coaddition
- Coadd processing
- Catalog production

Lower layer written in C++ for performance (150 KLOC), upper layer in Python for expressivity and convenience (350 KLOC)

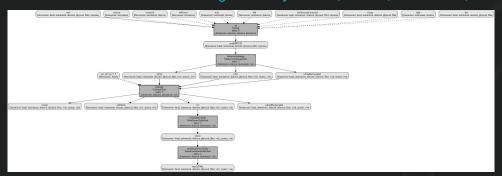
Expose CLI and Python APIs

Open source development: github.com/lsst

Documentation: pipelines.lsst.io

More information: An Overview of the LSST Image Processing Pipelines
Rubin Observatory Data Products Definition Document

LSST Science Pipelines (cont.)

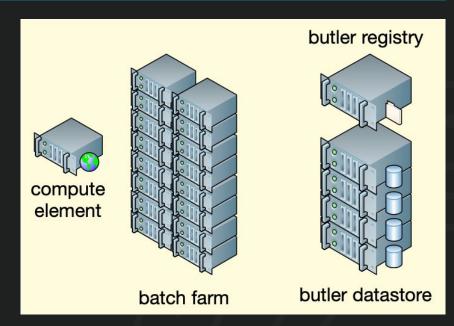

- Packaged and distributed via several mechanisms
 - Conda- and container-based (Docker, Apptainer)
 - Intended for installation at both individual scientists' personal computers and at data facilities
 - Linux (CentOS 7 and others) and macOS
- Batch farms in the 3 data facilities mount a single CernVM-FS repository
 - Image processing jobs can use the conda-based distribution or Apptainer container images to execute the pipelines
 - Details: <u>https://sw.lsst.eu</u>

/era C. Rubin Observatory | CHEP 2023 Acronyms & Glossary |

Middleware

- Image processing is organized into PipelineTasks that execute scientific algorithms on data
 - The Data Butler is the sole client library used to retrieve and persist data items specified using scientifically-relevant identifiers (not pathnames) to and from in-memory Python objects
 - It uses a database to track locations of items in a data repository and relationships between them.
- Batch Production Services (BPS) executes workflows composed of PipelineTasks,
 managing sequential dataflow and distributed data-parallel execution
 - Uses plugins to interface with workflow management systems (PanDA, HTCondor, Parsl, Pegasus)

Additional information: The Vera C. Rubin Observatory Data Butler and Pipeline Execution System


Typical Rubin data facility

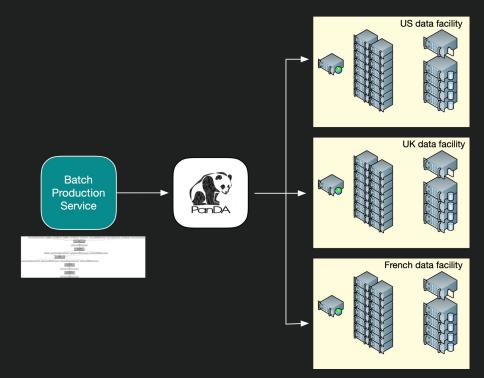
Compute element

- Exposes the site's batch farm to the workflow executor
- Typically composed of ARC CE and Slurm

Butler repository

- Registry: database which contains the location of the data and their relationships (PostgreSQL)
- Datastore: storage system where the data files are located. Weka (S3), Google Storage, dCache (webDAV), XRootD (webDAV), CephFS, Lustre

Additional information: The Vera C. Rubin Observatory Data Butler and Pipeline Execution System

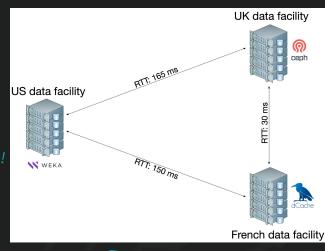

Distributed image processing

Batch Production Service (BPS)

- Generates the workflow to be executed at each facility: a directed acyclic graph of independent units of work
- Takes into account data dependencies and data location

PanDA

- Creates pilot jobs and coordinates the execution of the workflow
- Each job executes one or several science algorithms over a set of input data, stores output data in the butler repository local to the facility


15

For details see: Integrating the PanDA Workload Management System with the Vera C. Rubin Observatory, track 4, today 2pm.

Inter-site data replication

- Data replication will be achieved with open-source software:
 Rucio and FTS3
 - Proven to work at scale by the ATLAS and CMS collaborations, among others
- Rucio
 - Replica catalog: Where does my data live?
 - Data policy enforcement: How many copies of the data, and where?
 - Transfer scheduling: Arranges to satisfy your policies with external services!
- FTS3
 - Executes transfers scheduled externally on behalf of Rucio
 - Highly configurable for tuning handling of many transfers to many sites
- Rubin-specific tools
 - To identify data which needs replication among the facilities (e.g. exclude intermediates) and ask Rucio to replicate it
 - To trigger actions at each facility to timely ingest replicated data into the local data butler repository

Data replication over high-latency network links

16

Vera C. Rubin Observatory | CHEP 2023 Acronyms & Glossary

Ongoing work

- Regularly performing image processing exercises of increasing complexity at each facility
 - Using data sets of simulated images or images from other telescopes
 - Modest scale (a few thousands CPU cores) so far relative to the required scale
 - Orchestrated processing using the 3 facilities to be demonstrated: depends on Rucio and Butler integration
- Performing regular Rucio-driven data replication exercises across the Atlantic
 - Significant amount of small files (by HEP) standards could become an issue
 - Routine replication of relevant scale among the 3 facilities to be demonstrated

Backup slides

Vera C. Rubin Observatory CHEP 2023 Acronyms & Glossary

Details of each Rubin facility

US data facility

- Serves as the archive site of the observatory
- ARC CE, Slurm, Weka (S3, datastore), PostgreSQL (registry database)
- Hosts central services: PanDA, Rucio, FTS, logging facility

UK data facility

- ARC CE, CephFS/XRootD (webDAV, datastore), PostgreSQL (registry database), Kafka messaging
- Approximately 3 FTEs available over 6 persons

French data facility

- ARC CE, Slurm, dCache (webDAV, datastore), PostgreSQL (registry database)
- Hosts the stratum 0 of the CernVM-FS repository
- Hosts an instance of the astronomical catalog database and of the analysis platform