
ECHO: Experiences and developments
of the RAL-LCG2 Tier-1object store 
 in run-3 and preparing for HL-LHC

CHEP 2023, Norfolk, Virginia

James Walder, RAL

Covering inputs and activities from (non exhaustive):

Tom Byrne, Alastair Dewhurst,  
Ian Johnson , Alex Rogovskiy, 

 Steven Simpson, Jyothish Thomas

8–12 May 2023, CHEP, Norfolk, VA, USA

Tier-1 Data centre at RAL
• Rutherford Appleton Laboratory based in south Oxfordshire, UK

• Runs the UK Tier-1, supporting all LHC experiments,

• and an increasing number of small and larger VOs from other PP, PA, space and astronomy communities

• With recent upgrade to a 15-frames, currently is  
also housing the largest Tfinity library of tape storage  
in the UK and Europe, with 440PB capacity available.

2

8–12 May 2023, CHEP, Norfolk, VA, USA

T1 and large (storage) T2s highlighted

Glasgow

Lancaster

Manchester

QMUL

ImperialRAL-LCG2

Tier-1 Data centre at RAL
• Rutherford Appleton Laboratory based in south Oxfordshire, UK

• Runs the UK Tier-1, supporting all LHC experiments,

• and an increasing number of small and larger VOs from other PP, PA, space and astronomy communities

• Together with the other Tier-2 and Tier-3 sites in the UK

• provides the Compute, Storage and

• person expertise to deliver its MoU commitments 
to WLCG, and support non-LHC experiments

• Managed under the GridPP project,  
within STFC and UKRI.

3

8–12 May 2023, CHEP, Norfolk, VA, USA

ECHO @ RAL-LCG2
• ECHO: Ceph-based (RADOS) object store with data access provided through XRootD:

• XrdCeph OSS plugin – originally developed by S. Ponce (CERN) using ceph’s libradostriper

• Provides the interface between XRootD and ceph at the OSS layer

• Also deployed for UK Tier-2 site: Glasgow for ATLAS

• Over 50PB raw storage (+ 30PB with upcoming deployment).

• 8+3 Erasure Coding

• Currently ~ 240 Storage Nodes (SN), with ~ 5000 OSDs

• Host level failure domain (i.e. OSDs from placement group placed across different SNs).

• New hardware being deployed with uniform rack layouts;

• 2 service nodes (e.g. XRootD Gateway, Ceph Mon) 
+ several storage nodes per rack, with ToR routers.

• May facilitate future move to rack-level domain failure mode

• Nautilus + Centos7 (upgrade planning in progress)

• RAL also provides CephFS, S3 and SWIFT endpoints, etc.
4

8–12 May 2023, CHEP, Norfolk, VA, USA

ECHO: Data access architecture
• External Access (e.g. via FTS) to ECHO provided via XRootD server/gateway hosts:

• Currently each gateways behind round-robin DNS. 
 
 

• For Internal access, ie. staging data to Worker Nodes,

• Each WN has XRootD Xcache + server configuration

• Writes from the WN go via the external gateways

• Further specialised hosts for Alice and CMS AAA

• Work almost completed to move to clustered XRootD 
on External gateways (with 2 CMSD managers) for better 
load balancing / fault tolerance.

• On WNs, architecture about to be updated, 
removing XCache following new readV work, (see later slides …)

5

xrootd- Xrd-

XrdCeLibradosstrip
Ceph

root:
xrootd-
XrdCe

Ceph
Libradosstrip

External

xrootd-unified Xrd-
tpc.sh

XrdCeph
Libradosstriper

Ceph

root: tpc pull

xrootd-tpc

XrdCeph

Ceph
Libradosstriper

External Gateway

Ceph pools

 x O(15)

 x O(500)

Xrootd-proxy

Xrootd-ceph

XrdCeph
Libradosstriper

Ceph

xrootd- Xrd-

XrdCeLibradosstrip
Ceph

root:
xrootd-
XrdCe

Ceph
Libradosstrip

External

xrootd- Xrd-

XrdCeLibradosstrip
Ceph

root:
xrootd-
XrdCe

Ceph
Libradosstrip

External

xrootd- Xrd-

XrdCeLibradosstrip
Ceph

root:
xrootd-
XrdCe

Ceph
Libradosstrip

External

xrootd- Xrd-

XrdCeLibradosstrip
Ceph

root:
xrootd-
XrdCe

Ceph
Libradosstrip

External

Worker Nodes

Xrootd-proxy

Xrootd-

XrdCeph
Libradosstriper

Ceph

Xrootd-proxy

Xrootd-

XrdCeph
Libradosstriper

Ceph

Xrootd-proxy

Xrootd-

XrdCeph
Libradosstriper

Ceph

Xrootd-proxy

Xrootd-

XrdCeph
Libradosstriper

Ceph

Xrootd-proxy

Xrootd-

XrdCeph
Libradosstriper

Ceph

Xrootd-proxy

Xrootd-

XrdCeph
Libradosstriper

Ceph

Xrootd-proxy

Xrootd-

XrdCeph
Libradosstriper

Ceph

8–12 May 2023, CHEP, Norfolk, VA, USA

Storing data in ECHO: libradosstriper
• XrdCeph (xrootd-ceph) (and XRootD OSS plugin) interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed for production (largely deprecated by adoption of WebDav)

• Object store with flat namespace ; i.e. no directory structure - the path is the name of the file/object 

• Libradosstriper (in a nutshell):

• Converts a file into (typically) 64MiB (ceph) objects (with a ‘.016x’ encoded suffix to the ‘file’ path)

• First object encodes additional information in the extended attributes metadata (e.g. total and object size).

6

File} } }
64MiB 64MiB64MiB 64MiB

f’{file}.{0:016x}’ f’{file}.{1:016x}’ f’{file}.{2:016x}’

8–12 May 2023, CHEP, Norfolk, VA, USA

Storing data in ECHO: libradosstriper
• XrdCeph (xrootd-ceph) (and XRootD OSS plugin) interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed for production (largely deprecated by adoption of WebDav)

• Object store with flat namespace ; i.e. no directory structure - the path is the name of the file/object 

• Together with usual EC in Ceph:

• Objects on disk are made up of all the chunks/stripes for that object:

7

8–12 May 2023, CHEP, Norfolk, VA, USA

Storing data in ECHO: libradosstriper
• XrdCeph (xrootd-ceph) (and XRootD OSS plugin) interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed for production (largely deprecated by adoption of WebDav)

• Object store with flat namespace ; i.e. no directory structure - the path is the name of the file/object 
 

• e.g. a typical 10GB file,

• Total of 157 ceph objects created

• On ~1400 unique OSDs. 

• Data situated across ~230 SNs,

• on average data occupying 6 OSDs per SN

8

Typical 10GiB file OSD usage per SN

#OSDs/SN

C
ou

nt

8–12 May 2023, CHEP, Norfolk, VA, USA

Challenges for Run-3
• Recent decisions / developments influencing ECHO:

• Adoption of WebDav (deprecating gridFTP) for bulk of data transfers in WLCG:

• Paged reads and writes in XRootD

• These introduced (typically) small reads/writes against the storage

• Previously, e.g. XRootD transfer (using root://) would have ~8MiB chunks

• Paged reads/writes => 64kb

• ~1MiB chunks between XRootD (HTTP) and the storage layer

• Libradosstriper: no (direct) vector read support; poor performance in direct-IO like jobs

• Libradosstriper designed to provide mostly atomically correct behaviour for all r/w operations

• Overhead of Locking and unlocking behaviour for small reads / writes

• Less efficient for WORM

• Previously; caching (memory or XCache) proxies in XRootD to construct large IO requests;

• Not always behaved as assumed, or in bypass/overload state it exposed all (small) reads to ceph/libradosstriper

• Strategy 1: Implement a buffering layer in the XrdCeph plugin to mitigate small reads/writes

• Strategy 2: Bypass (where appropriate) the overheads of using the libradosstriper, and utilise (optimised) librados calls directly

9

8–12 May 2023, CHEP, Norfolk, VA, USA

Strategy 1: Buffering
• Simple buffering layer added into XrdCeph:

• Reads: Read large chunk from ceph; hand out small chunks to client as requested.

• Bypass the buffer if read size is at least the buffer size.

• Writes: Accumulate writes into buffer, and flush to ceph when buffer is full (or at file end).

• Limited caching per-se, but effective for whole file copies.

• Empirically, optimised at 16MiB buffer size for external (e.g. FTS based) transfers:

10

Read and write  
speeds 
for 1 GiB files on 
test ceph instance

8–12 May 2023, CHEP, Norfolk, VA, USA

Strategy 2: Vector read support (and improved read operations)
• Vector Read (readV) operations:

• Some workflows, e.g. user analysis 
only subset of data across the (usually root) file is needed

• ReadV requests previously were serialised into individual (small) reads

• Overheads in lock and unlock metadata operations on OSDs

• By using the atomic operations in librados directly,

• Batches up reads into single request to offload work to the primary OSD

11

Tom Byrne,  
Cephlocon ’23

https://sched.co/1JKZT

• Slides

Small libradosstriper reads Lock and unlock
require expensive
updates on all OSDs
in PG

The actual read is
comparatively quick

Non-primary OSDs
are just dealing with
reading and writing
to disk

Primary OSD handles
requests from the client and
sends “sub requests” to the
rest of the OSDs in the PG

(information derived from
OSD messenger debug logs)

Example of individual read

Atomic librados read operations
• Librados supports atomic operations
– multiple operations on an object
batched up by the client and then
sent to the PG. e.g.
1. rados_create_read_op
2. rados_read_op_read (x100)
3. rados_read_op_operate

• This seems to be analogous to our
XRootD vector reads, and results in
promising efficiency gains in testing

• One round trip within the placement
group OSDs, and no excessive
queuing on the primary

Atomic librados read operations
• Librados supports atomic operations
– multiple operations on an object
batched up by the client and then
sent to the PG. e.g.
1. rados_create_read_op
2. rados_read_op_read (x100)
3. rados_read_op_operate

• This seems to be analogous to our
XRootD vector reads, and results in
promising efficiency gains in testing

• One round trip within the placement
group OSDs, and no excessive
queuing on the primary

Example of read time for atomic read of 100 requests

https://sched.co/1JKZT
https://static.sched.com/hosted_files/ceph2023/a4/Optimizing%20Ceph%20IO.pdf

8–12 May 2023, CHEP, Norfolk, VA, USA

Implementing striper-less readV support
• New code specification within XrdCeph should:

• Reimplement the high-level features of the striper (for read operations)

• (i.e. to chunk the file into individual ceph objects)

• Build read operation requests within each ceph object

• Submit and wait for completion of requests against ceph

• Rebuild and return the readV (read) data

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

File / radosstriper

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Object 0 Object 1 Object 2 Object 3

Read(2,11) -> { read(, 2, 2); read(, 0, 4); read(, 0, 4); read(, 0, 1) }

‘Cartoon’ of simplied file structure,  
with a read request covering serval  

ceph-objects in a file

8–12 May 2023, CHEP, Norfolk, VA, USA

Performance of readV improvements
• Comparison of code using libradostriper with serialised readV requests,

• compared to updated bypassed-libradostriper, without the additional locking, and batched readV requests:

13

Original Updated

Note the different horizontal scales …

- 32 processes submitted simultaneously

- Every process connects to the storage,

- executes 100 readv requests,  

then disconnects; the procedure is repeated 10 times  
(i.e. each process submits 1000 readvs overall)

- Every individual readv request has 900 chunks

- Chunks are scattered over 42 MiB

- Every chunk is between 1 to 1024 bytes.

<latexit sha1_base64="mOaRjqtXEKsAYsoRRUbnESOc9dU=">AAAC5XicbVLLbtNAFB2bVzGvAEs2IyIqVpYNUVN2FWzYUaSmrRRb0Xh8k4wyD2vmGilY+QR2iC0fxYpvYcPYMW3acqSRju89czz3zBSVFA6T5HcQ3rp95+69vfvRg4ePHj8ZPH126kxtOUy4kcaeF8yBFBomKFDCeWWBqULCWbH60PbPvoB1wugTXFeQK7bQYi44Q1+aDX5lBSyEbpAVtWR200hrN1GGprK1hKjZ0H1KFTBNpy7f8lL0X1kWnXhL2mKfXmKX01aVKVF2dp+s8D9j8p/kIE6SS3kSH45a+aQqGUJ5YZTGyXhXNX7bmRYG0ajONwNdXowQzQbDxBu3oDdJ2pMh6XE8G/zJSsNrBRq5ZM5N06TCvGEWBZfg46gdVIyv2AKmnmqmwOVNF/6GvvKVks6N9Usj7aq7OxqmnFurwisVw6W73muL/+0Vxqz8TM436dJY8dXb++jam3ZXj4Tzw7wRuqoRNN+eaF5Lioa2V05LYYGjXHvCuBV+KMqXzDKO/mG0aaXXs7lJTt/E6UE8+jwaHr3vc9sjL8hL8pqkZEyOyEdyTCaEB++CWbAMRLgIv4Xfwx9baRj0e56TKwh//gXf3tWo</latexit>

mean [s] median [s]

Type

Original 6.00 0.84

Updated 1.07 0.73

8–12 May 2023, CHEP, Norfolk, VA, USA

LHC job success rate (readV)
• In final testing:

• Updated code running on one tranche of RAL-LCG2 worker nodes:

• Currently, for LHCb jobs, negligible failure rate (for this failure mode) on the updated tranche:

• Usual error failure type would manifest a timeout to read data

14

LHCb Job failures rates (via readV errors)

Tranche

8–12 May 2023, CHEP, Norfolk, VA, USA

Read improvements
• Read operations can now also bypass libradosstriper

• Avoid the locking overhead behaviour

• Improved performance over buffering (w/ striper) 

• When doing sparse file reads with buffering:

• Low hit efficiency possible

• Buffering layer still can be important:

• At production scale, small reads may  
still induce bottlenecks

• Asynchronous buffering to hide any 
latency of reads from ceph 

• Testing in production for different workflows / 
use cases (e.g. AAA, FTS-based, WN)  
starting

• Will deploy to all WNs this week
15

Read and write  
speeds 
for 1 GiB files on 
test ceph instance

8–12 May 2023, CHEP, Norfolk, VA, USA

Summary
• ECHO at RAL-LCG2, with XrdCeph received significant effort and developments:

• Implementation of improvements required for successful transfers in run-3 and towards HL-LHC

• Also for direct-IO operations using (typically) small readV requests.

• Bypassing libradosstriper and optimising with librados calls for reads can leverage orders-of-magnitude
improvements in small io operations

• Will study other potential impacts of these improvements: e.g. CMS efficiencies, by removing lazy-download 

• Other developments (more info in backup):

• Better parallelisation of deletion requests

• Improved performance of metadata checksum operations

• Improved space reporting functionality via xrdfs

• Clustered CMSD redirector setup with HA 2-manager configuration using keepalived

• Further work on checksum calculation improvements would be beneficial in network throughput utilisation

• New workflows and data access patterns will continue to be studied, and further developments incorporated, if
required.

16

8–12 May 2023, CHEP, Norfolk, VA, USA

Additional updates

17

Adding CMSD redirection
• CMSD should handle the load balancing of data  

transfers through the Gateways

• Want to provide HA for the CMSD/XRootD 

 managers

• Use keepalived to provide failover  

• Client connects only through xrootd port 1094

• CMSD inter-communication on 1213

• DNS alias with two floating IPs is frontend

• Existing gateways act as redirected servers

Clustering Configuration Introduction

Configuration 27-July-2021 7

In order to make the system as flexible as possible, the manager cmsd does not
know how many or which hosts will acts as servers. For security purposes, you can
restrict hosts based on host name as well as by NIS netgroup. Thus, servers
essentially subscribe to the manager claiming that they have file resources. During
the subscription process, each server indicates the file paths to which it is willing to
provide data access. Periodically, the manager cmsd requests load information from
each server. Each server reports CPU, network I/O, queue, memory, paging load as
well as free space. This information is used to select the best available server for an
open request.

The decision is tempered whether or not the server already has the file on disk or
whether the file must be staged to disk from a Mass Storage System. The manager
may decide that all available servers are too loaded and force a file to be replicated
on a less loaded server. This provides additional data paths to the file. Replicated
load balancing is only compatible with read-only files. The manager can direct
client’s to a writable version of a files but only on servers that have indicated that
they offer write access on the associated path. In general, only one such server may
exist for each particular path.

In order to provide a fully redundant service, all servers may be replicated and
cross-connected, as full full crossbar configuration shows above.

xrootd xrootd xrootd

cmsd

Host x Host
y2

Host z

xrootd

Host
y1

cmsd cmsd cmsd

Figure 1.1.1-2: A Fully Redundant Cluster Configuration

 all.role manager all.role manager all.role server all.role server

alias.domain:1094

Floating IP Floating IPClient

1. Control

2. Redirect

3. Gateway

4. Data keepalived  
(running on the manager hosts)

8–12 May 2023, CHEP, Norfolk, VA, USA

http://rdr.echo.stfc.ac.uk

8–12 May 2023, CHEP, Norfolk, VA, USA

Updates to ECHO operations: Deletes
• Deletions performed ‘live’ against Ceph (i.e. no database / asynchronous operations)

• Moving from gridFTP to davs/root: gridFTP used a ‘python script of last-resort’ to delete files, if stuck.

• XrdCeph now includes better handling of locked files;

• ‘stub’ (0-byte) files with missing striper metadata still needs manual handling (increasingly rare).

• Proxy + Sever configuration created serialisation of delete requests from the client.

• i.e. one slow request (e.g. due to ceph operations, etc) would stall all subsequent queued requests

• Removing the proxy (e.g. the ‘unified’ config) allows deletes to be parallelised:

• Plot of recent ATLAS deletion times against 
ECHO;

• Small dependency on file size

• Concurrency appears to have stronger 
dependence

• May require further work as filesizes and 
deletion counts increase.

19

<latexit sha1_base64="pgEtys1ribSxHl8nqrDPSB70ujw=">AAAEDnicfVPPb9MwFH5L+DHKjxV25GJRQJyqpO0YB5CmcYAL0hB0m9REk+O6rVUnjmwHqYt65wj8MdwQV/4F/hYkxEuaVW0zZsv28/e+79l5L45SKYz1vN9bjnvt+o2b27cat+/cvbfTvP/g2KhMM95nSip9GlHDpUh43wor+WmqOY0jyU+i6evCf/KJayNU8tHOUh7GdJyIkWDUIqSafyGACDiMQUACOViguM9A4qphjojEXlgNZFpQkOKu8HNEcsQJPMWx3j9gtHNkXPjeoU0xPoEBGAhxDbAXEWNkDlcierV4j+ElvMLZxygCDmt+D9rQg71lTH+D4ZNdxLwr1Z2lurNkLDWl/s1/1XvliQt1t8YoTu9eod4vNQt1b4PRrW5+udpHtV/m6yKXEVbHljWKVzIa4Jxgjuu1bZw1W17bKxupG35ltKBqR2fNP8FQsSzmiWWSGjPwvdSGOdVWMMnnjSAzPKVsSsd8gGZCY27CvPxL5+QJIkMyUhpHYkmJripyGhsziyNkxtROzKavAC/1RUpNLY0MOslEaXGO4akkxZMw61eyoxdhLpI0szxhixuNMkmsIsXbIEOhObNyhgZlWuBHETahmjKLL6jIlr+Zm7px3Gn7z9u9973WwWGVt214CI/gGVZrHw7gLRxBH5gTOZ+dr84394v73f3h/lxQna1Kswtrzf31D38c3EQ=</latexit>

Size Mean [s]

0 <=1MiB 0.45
1 1–10MiB 0.42
2 10MiB–1GiB 0.51
3 1–3GiB 0.73
4 3–10GiB 1.10

8–12 May 2023, CHEP, Norfolk, VA, USA

Updates to ECHO operations: Checksums
• Originally (in xrootd) could only calculate checksum from the data, when requested:

• unable to read gridFTP computed checksums, due to endian-ness issues; GridFTP used the XrdCks format

• External python script now used to compute / retrieve checksum.

• Additional overhead on Gateways, as data needs to be read back from Ceph to the gateway. (x2 bytes
received in to the NIC); safe for the paranoid.

• ~ 10s / GiB for checksum computation

• Currently improving this to avoid the overhead of setup / teardown  
 of rados client connections per request:  
(important for retrieval of data from metadata). 

• Several discussions on improving further: e.g. on-the-fly  
checksumming; and (my preferred) computation at the OSD level.

• Also considering developing Checksum plugin (dev documentation?)

20

Includes gfal + lxplus RTT

<latexit sha1_base64="dmifLmXScErv2L0NPZWr0ivHCkg=">AAACpnicbVHJjtNAEG2bbTBbgCOXFhFo4BDZo7AcR8wcuIAGiSQjxVbobleSVnqxehkpWPkLfo5fgQvtjoWYGUpq6dV7VdW10EZw6/L8Z5LeuHnr9p2Du9m9+w8ePho8fjK12hsGE6aFNueUWBBcwcRxJ+C8MUAkFTCjm5NOn12AsVyrr27bQCXJSvElZ8QFajH4UVJYcdU6Qr0gZtcKs8tKpxvjBWTtDr/E+BMQhU+9iSl4Lm2FyzKb7qviLqK3wJaS1zH1xBsDykV1/CbvtFO4iG4xjm5JtXNaxugSVP23h2wxGOajPBq+DooeDFFvZ4vB77LWzMvwIRPE2nmRN65qiXGcCQgDeQsNYRuygnmAikiwVRu3t8MvAlPjpTbhhYYj+29GS6S1W0lDpCRuba9qHflfjWq9CTPZIOK1Nvx7KE8E7k5lL7fklu+rlqvGO1Bs39HSC+w07m6Ga26AObENgDDDw1CYrYkhzIUbdNsqru7mOpgejYq3o/GX8fD4Q7+3A/QMPUeHqEDv0DH6iM7QBDH0K8HJq+R1eph+TifpbB+aJn3OU3TJ0m9/AFOOyr0=</latexit>

Mean Duration [ms]
Version

Current 450
Dev 140

8–12 May 2023, CHEP, Norfolk, VA, USA

ATLAS job success fraction
• ATLAS job success fraction for jobs

• Failed jobs are characterised by “failure in the payload” for user analysis jobs using direct-IO.

• These include file access errors, user errors, etc.

21

8–12 May 2023, CHEP, Norfolk, VA, USA

Storing data in ECHO: libradosstriper
• XrdCeph (xrootd-ceph) (and XRootD OSS plugin) interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed for production (largely deprecated by adoption of WebDav)

• Object store with flat namespace ; i.e. no directory structure - the path is the name of the file/object 

• Libradosstriper (in a nutshell):

• The following steps are standard Erasure Coding for Ceph (librados):

• A 64MiB Ceph object:

• Data is split into 4kb (or 32kb depending on pool) stripes on the primary OSD:

• Stripe size define the smallest amount of data that can be reconstructed.

22

f’{file_name}.{object_index:016x}’

…

8–12 May 2023, CHEP, Norfolk, VA, USA

Storing data in ECHO: libradosstriper
• XrdCeph (xrootd-ceph) (and XRootD OSS plugin) interfaces XRootD to librados(striper)

• GridFTP plugin also successfully deployed for production (largely deprecated by adoption of WebDav)

• Object store with flat namespace ; i.e. no directory structure - the path is the name of the file/object 

• Libradosstriper (in a nutshell):

• The following steps are standard Erasure Coding for Ceph:

• Each stripe encoded into data (8) and parity (3) chunks (8+3EC) 
and stored across the (11) OSDs

23

