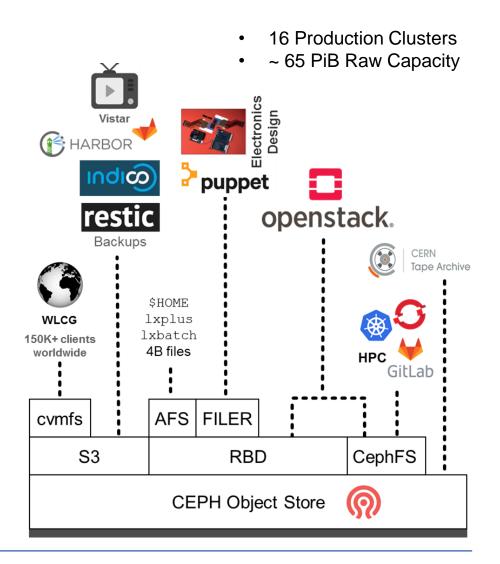
Norfolk, Virginia, USA • May 8-13, 2023

Computing in High Energy & Nuclear Physics

Enabling Storage Business Continuity and Disaster Recovery with Ceph distributed storage

Enrico Bocchi Abhishek Lekshmanan Roberto Valverde

May 8, 2023

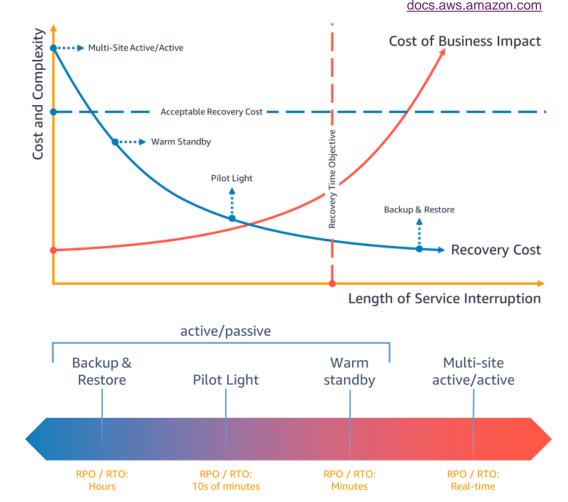

Ceph at CERN

• Ceph provides 3 types of storage

- Block RBD, OpenStack Cinder/Glance Volumes
- Object S3, Swift
- File System CephFS, OpenStack Manila Shares, K8s/OKD, HPC scratch

• IT Services

- Cloud Infrastructure, Code repositories, Container Registries, Agile Infra
- Monitoring: Open Search, Kafka, Gafana, InfluxDB, Kibana
- Document Repositories // Web: Indico, Drupal, WordPress
- Analytics: HTCondor, Slurm, Jupyter Notebooks, Apache Spark
- Other Storage
 - NFS Filers, AFS, CVMFS, CERN Tape Archive, ...
- Physics Experiments and End-Users
 - ATLAS Event Index, Alice O2 Build/CI, Microelectronics Design, ...


Planning for Ceph BC/DR

• Various strategies possible

- Active/Active, Active/Passive, Backup & Restore
- Ceph has features mapping to each strategy
- Complexity comes from combinations of strategies and storage types (block, object, fs)

Driving factors

- Use existing components and expertise (upstream and in-house)
- Technology maturity and reliability
 - Not all Ceph features are immediately production-ready

Purpose of This Talk

This is a journey through our explorations for Ceph Business Continuity and Disaster Recovery (BC/DR)

- We report on the experience collected while testing Ceph features
- Goal is to collect evidence for decision-making, then promote to production the most appropriate solutions according to the requirements

RBD, Block Volumes

1. RBD: Storage Availability Zones

- What for: <u>BC High(er) Availability</u>
- Spread RBDs over multiple clusters
 - Following major outage, causing 8hrs downtime
 - Evolved from 1 RBD cluster, 4 volume types, to 5 RBD clusters
 - Each cluster is fully decoupled from the others
 - Admittedly less practical to manage and use
 - We (almost) exposed 12 volume types
 - ...and a form with 30 fields to fill

Details *	Please provide some quota de	ease provide some quota details about the block storage resources you may use.		
Compute	Volume Type	Number of Volumes	Space in Gigabytes	
	barn-100	0	0	
Volumes	barn-500	0	0	
File Shares	cp1	0	0	
	cpio1	0	0	
Object Storage	iol	0	0	
Network	io2	0	0	
	io3	0	0	
	standard	0	0	
	vault-100	0	0	
	vault-500	0	0	

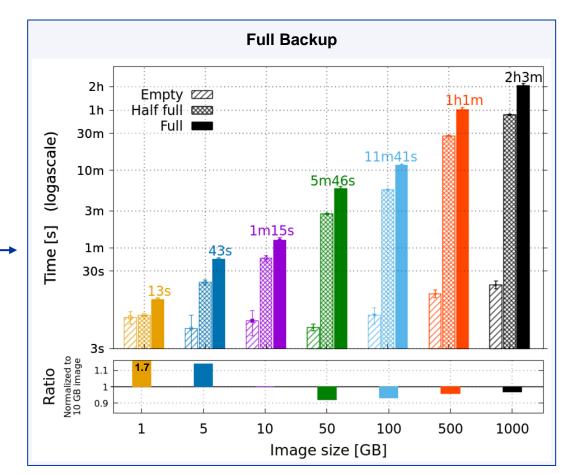
1. RBD: Storage Availability Zones

Consolidate volume types according to <u>QoS</u>

- Simplify to 6 types exposed to users
- Storage Availability Zones for standard and iol types
 - Backed by 3 RBD clusters
 - Different rooms, UPSs, network branches

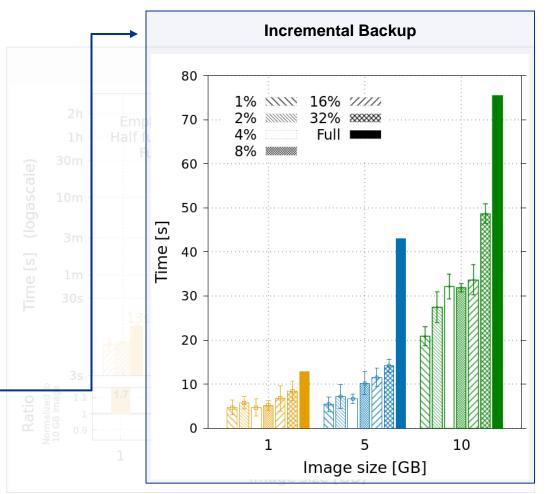
Users to decide which Storage AZ hosts the volume

 Else, OpenStack Cinder picks a cluster according to internal weighting functions (e.g., least full cluster)


	bility-zone ceph-geneva-3 -+	-
Field	' Value -+	Ì
availability_zone	ceph-geneva-3	+
name	chep23	I
size	10	1
status	creating	1
type	standard	1

Volume Type standard	0	Space in Gigabytes O
io1	0	0
io2	0	0
io3	0	0
cp1	0	0
cpio1	0	0

1. RBD: Backups


- What for: DR Backup & Restore
- Full Backups, rbd-to-rbd
 - Relies on librbd and low-level RBD features `rbd export-diff | rbd import-diff`
 - Good backup performance out-of-the-box:
 - RBD copies at ~140 MB/s per image
 - Speed is sustained and consistent with varying image sizes

1. RBD: Backups

- What for: DR Backup & Restore
- Full Backups, rbd-to-rbd
 - Relies on librbd and low-level RBD features `rbd export-diff | rbd import-diff`
 - Good backup performance out-of-the-box:
 - RBD copies at ~140 MB/s per image
 - Speed is sustained and consistent with varying image sizes
 - Efficient incremental backups:
 - Based on difference (fast-diff, object-map) between previous backup and current state of the image
 - Copy only the extents that changed to backup target

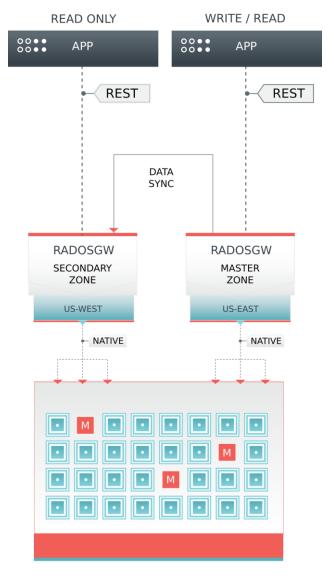
S3 Objects

2. S3 Objects: Multisite Replication

- What for: <u>BC High(er)</u> Availability
- Full mirror with master + secondary zone
 - Test setup with 2 bare-metal clusters (Quincy 17.2.5)
 - Two zones (rw), one zonegroup, dedicated radosgws for sync traffic configured as zone endpoints
- Basic functional testing with MinIO Warp
 - 1M objects, log2 random size (up to 64 MB), multipart uploads
 - Very flexible: Distribution of request types, versioning, retention, ranges, ...
 - Not specific to multisite deployments

READ ONLY WRITE / READ 0000 0000 APP APP 00... REST REST DATA SYNC RADOSGW RADOSGW SECONDARY MASTER ZONE ZONE **US-EAST US-WEST** - NATIVE - NATIVE

MASTER ZONEGROUP (United States)

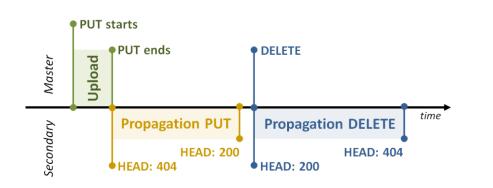

MASTER ZONEGROUP

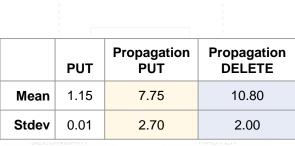
2. S3 Objects: Multisite Replication

• Main pain points

- 1. Sync may lag behind and struggles to recover
 - We wrote 1M objects to the master zone, while secondary was shut-off
 - It took ~1 day to sync with no other load on the clusters

MASTER ZONEGROUP (United States)


MASTER ZONEGROUP


2. S3 Objects: Multisite Replication

• Main pain points

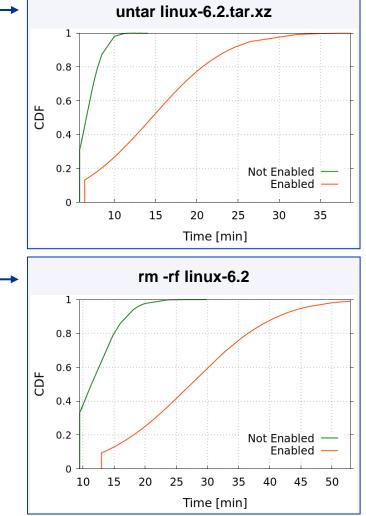
- 1. Sync may lag behind and struggles to recover
 - We wrote 1M objects to the master zone, while secondary was shut-off
 - It took ~1 day to sync with no other load on the clusters
- 2. Intrinsic inter-zone replication delay:
 - Full mirror mode implies eventual consistency
 - Secondary zone may not have most-recent objects

2. S3 Objects: Immutable Backups

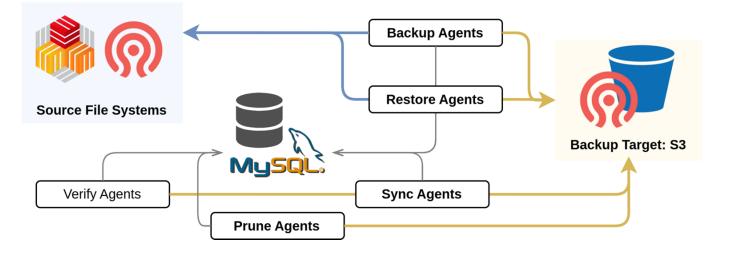
- What for: DR Backups Store
- Immutable S3 Objects with Retention Policies
 - Versioning: PUTs on existing objects preserve existing data as previous object version (w/ versionID)
 - Object Locks: Prevent deletions to objects (and versions) for a retention period
 - Retention: Predefined (user/admin choice) to defer deletions

Archive Zone

- Solves the problem of having a global zone archiving all objects versions
- Understands bucket versioning with no write amplification
- Likely on slower, cheaper media
 - Not the case yet Shingled disks or tape in the future?



File System


3. CephFS: Snapshots (and Mirroring)

- What for: BC/DR Rollback, Backup
- Immutable point-in-time view of a file system
 - Snapshots can be triggered by users, or automated by admin
 - Existing snapshots accessible at .snap directory
 - Creation is fast: Lazy flush, copy-on-write
- Severe impact on performance
 - Tested some metadata intensive workloads (Pacific 16.2.9)
 - Done in a 10-level deep directory tree containing 100 empty or sparse directories
 - Problem seems localized in the Metadata server, kept busy tracking ancestors
 - Trying to work-around by isolating FS with snaps on dedicated MDSs
 - Helpless if everyone wants snapshots...

3. CephFS: Restic Backups at Scale with cback

- What for: DR Backup & Restore
- Backup orchestration tool for File Systems
 - Based on Restic, with the addition of horizontally-scalable agents
 - Used to backup EOS/CERNBox and (some) CephFS
 - Source: Any mounted file system
 - Destination: Ceph S3

3. CephFS: Restic Backups at Scale with cback

- What for: DR Backup & Restore
- Backup orchestration tool for File Systems
 - Based on Restic, with the addition of horizontally-scalable agents
 - Used to backup EOS/CERNBox and (some) CephFS
 - Source: Any mounted file system
 - Destination: Ceph S3
- Next challenge: Write backups to Tape
 - Restic expects (meta)data to be on hot storage (#3202)
 - Improvements needed to optimize access to tapes
 - Object sizes, access frequency, fragmentation over multiple tapes, ... Verify

"Evolution of the CERN Backup system based on RESTIC and the CERN Tape Archive (CTA)", Fons Rademakers

→ Tomorrow, 3pm, Norfolk Ballroom

Conclusions

1. There is no catch-all solution

- BC and DR are different concepts with different goals, and require different technical solutions – Active/Active vs Backup&Restore
- Block, Object, and File System come with different features for BC/DR

2. Feature maturity greatly differs

- Snapshots for CephFS have severe performance implications, RBD backups works out the box nicely.
- S3 multisite "works" with some limitations and increased operational complexity
- Work continues:
 - Finalize cross-cluster RBD backups and prepare for production deployment
 - Use cback for CephFS backups more widely

Thank you!

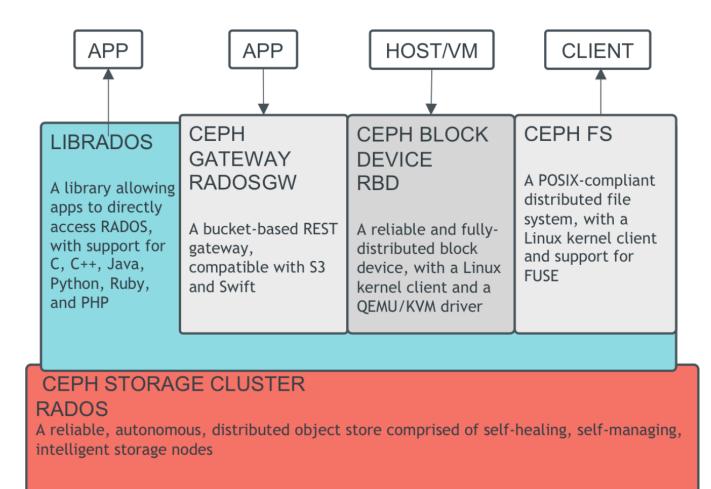
Enabling Storage Business Continuity and Disaster Recovery with Ceph distributed storage

> Enrico Bocchi enrico.bocchi@cern.ch

Backup

What is Ceph?

• Free and Open storage software

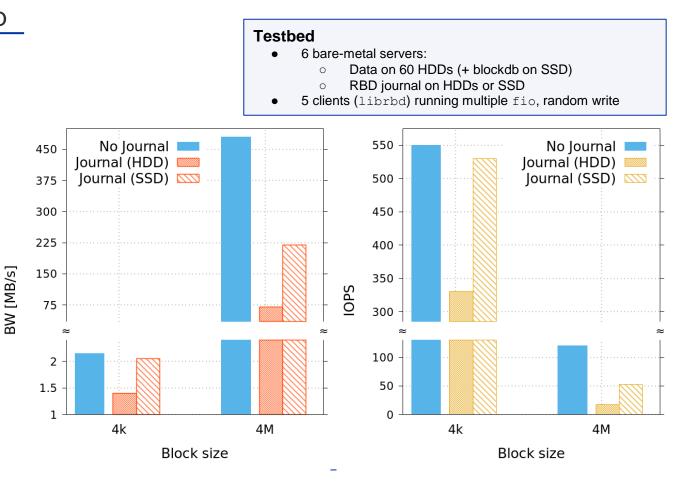

- **RBD**: Virtual Block device
- RADOSGW: S3-compatible storage
- CephFS: Scalable distributed filesystem

Reliable and Durable

- Favor consistency and correctness over performance (or availability)
- No single point of failure
- Replication or EC

Scalable

- Online add/remove storage, software upgrades
- Single-cluster or multi-cluster federation


Ceph at CERN

Application		Size (raw)	Version
RBD (OpenStack Cinder/Glance, krbd)	Production, HDDs	24.5 PiB	Pacific
	Production, full-flash EC 4+2	643 TiB	Pacific
CephFS (OpenStack Manila – K8s/OKD PVs, HPC)	Production, HDDs	7.9 PiB	Pacific
	Production, full-flash	782 TiB	Pacific
	Hyperconverged (HVs with flash storage)	892 TiB	Octopus
CERN Tape Archive (CTA)	Tape DB and Disk Buffer	235 TiB	Octopus
RGW (S3 + SWIFT)	Production (4+2 EC)	4.1 PiB	Octopus
S3, RBD: Backup to 2 nd Location	Production (4+2 EC, 3 replicas)	25 PiB	Octopus

1. RBD: Mirroring

- What for: BC/DR Active/Passive Setup
- 1. Managed by rbd-mirror daemon
 - Reads state of RBD images from source to replay asynchronously on target
 - RBD client writes to image and journal
 - Severe impact on client performance
 - Replays are slow: ~30 MB/s (but scale well with number of images)
 - Risk of lagging behind:
 - Replicas get out-of-date
 - RBD journal not trimmed

1. RBD: Mirroring

2. Snapshot-based Mirroring

- Allows for point-in-time replication
- Image snapshot diff exported from main cluster, then imported to mirror target
- Performance impact only related to:
 - Snapshot trimming and replay workload
 - RBD client not involved in replication
- Replays are fast: ~200 MB/s per image
- Several improvements and fixes in Ceph (GitHub)
- Not supported (yet) by OpenStack (<u>OpenDev</u>)

1. RBD: Mirroring

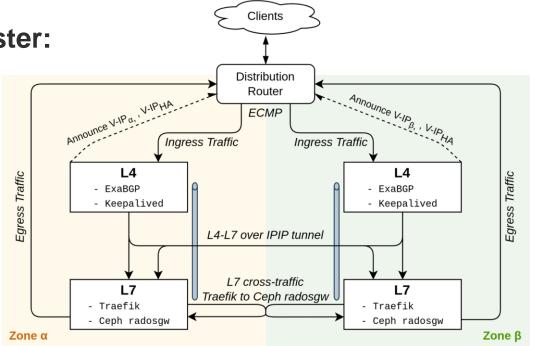
- What for: DR Backup & Restore
- Mirroring based on Snapshots:
 - Allows for point-in-time replication
 - Image snapshot diff exported from main cluster, then imported to mirror target
 - Performance impact only related to:
 - Snapshot trimming and replay workload
 - RBD client not involved in replication
 - Replays are fast: ~200 MB/s per image
 - Several improvements and fixes in Ceph (GitHub)
 - Not supported (yet) by OpenStack (<u>OpenDev</u>)

2. S3 Objects: Sync to External Clouds

- Two modules available, sadly almost abandoned
 - 1. Cloud Transition
 - Potential use case: Transition to a remote site for cold-media backups
 - Requires local zone modification + storage class creation
 - Lifecycle policies on a per bucket policy, no site-wide policy
 - Limitation Currently single account key for remote site

2. Cloud Sync Module

- Potential use case: Keep copy of (very) critical data on cloud that can be used by local compute
- Requires separate zone which acts as a pipe to move data
- Limitation Saw several crashes on misconfiguration; Requires effort to bring to production grade


2. S3 Objects: BGP Load Balancing

• DNS load balancing has several limitations:

- Reacting to change hints for low TTL (recursive queries may hit a minimum TTL)
- Client behavior is implementation-specific (libraries, OSes, caches, ...)

• Expose 1 Virtual-IP for the whole multisite cluster:

- Routers forward traffic to L4s with 5-tuple hashing
- L4 balancers:
 - Peer with routers announcing one V-IP (ExaBGP)
 - Forward to L7s with consistent hashing (<u>Maglev</u>) over IPIP
- L7 balancers:
 - Run Traefik frontend and Ceph radosgw
 - Answer to clients through direct return paths with routers
- Allows directing clients to the closest zone (lower metric)
 - Or fallback to other zone if preferred is unavailable
- Does not help with replication delay between zones

