Evaluation of Rucio as a Metadata Service for the Belle II

Panta, Anil (University of Mississippi)
Serfon, Cedric ; Ito, Hiro ; De Stefano Jr, John Steven ; Mashinistov, Ruslan; Laycock, Paul (BrookHaven National Laborotary)
Hernandez Villanueva, Michel (DESY)
Miyake, Hideki; Ueda, Ikuo (KEK/IPNS)

CHEP, 2023
Introduction

• Belle II is a B-factory based at KEK (Tsukuba Japan).
• International collaboration of institutes all over the world that started data taking in 2019.
• Belle II uses a distributed computing model based on standard tools in HEP:
 - DIRAC for workload/workflow management.
 - Rucio for Data Management.
 - FTS for file transfers.
• For metadata Belle II uses the AMGA service initially developed for LCG:
 - Service not used outside Belle II (i.e. limited support)
 - Rucio provides also metadata functionality and is supported by a wide community → Decision to evaluate it.
Belle II Computing

• Belle II uses DIRAC with a specific extension called BelleDIRAC

• Rucio:
 - For the data management part as service
 - As a catalog that is used by BelleDIRAC. Contains the full namespace of Belle II data.

• Belle II uses a hierarchical namespace
 - Files are at the deepest level.
 - Datablocks contain files and are the unit of replication and processing
 - Datasets are an aggregation of datablocks
Metadata in Belle II

• As mention earlier, Belle II uses Hierarchical namespace.

• Metadata are stored in AMGA.

• Belle II uses different metadata depending of the level in the namespace hierarchy
 - Files : Number of events, site where the file was produced, etc.
 - Datablock : Number of file in the datablock, creationDate, etc.
 - Dataset : beamEnergy, dataLevel, productionId, etc.

• Metadata can also be classified by their use cases .
 - Use for processing : status, nEvents, checksum, etc.
 - Use for monitoring/accounting : size, dataLevel, etc.
 - Use for traceability : steeringFile, productionId, etc.

• A metadata service should be able to support these different type of metadata and use-cases.
Metadata in Rucio

• Rucio is a Data Management advanced tool that provides many Data Management advanced features

• Rucio can be used as a (hierarchical) file catalog to register the namespace and the metadata associated to all the component of the namespace

• Different type of metadata are supported by Rucio.
 - Fixed set of metadata stored as column of specific type used in the main table in Rucio database (aka column metadata)
 - Any type of key:value pair stored using the json type in Rucio database (aka json metadata)
 - External metadata services (not considered here)

• For Belle2 we chose to store:
 - Metadata used for accounting in the column metadata.
 - all the rest are stored in json metadata.
Metadata Related Development

- File or the directories in the namespace hierarchy can inherit the metadata of the parent.

 \[
 \text{get_metadata_bulk(dids, inherit=False)}
 \]

- Provide new bulk methods in Rucio to register metadata.

 \[
 \text{set_dids_metadata_bulk}
 \]

- Implement methods in RucioFileCatalog interface in BelleDIRAC similar to the metadata methods of the DIRAC File Catalogue

 - getFileUserMetadata (getFileUserMetadataBulk)
 - setMetadata (setMetadataBulk)
 - removeMetadata

- Changes Done in Pilot and Production Client to report metadata to Rucio (see latter slide).

- Introduce new tool to create accounting summaries based on metadata and populate influxDB

- Adapt the end-user tools to allow using Rucio as metadata backend
Metadata tests

• A stress test was conducted using a snapshot of Belle II production instance (~100M files imported) and deployed on a test instance:
 ◦ Similar DB backend as the production one, but only one Apache front-end
 ◦ Test is querying a list of files in Rucio and set a few metadata for each file
 ◦ Multiple tests are run in parallel using a batch system to increase the load on Rucio (up to 360 jobs)

• No bottleneck observed on the DB side.
• Limitation comes from the single front-end used for the test, but can be scaled horizontally

2M / 3 hours ~ 185 metadata rows /s

Since the test writes 7 metadata per LFN, it is 1.3kHz metadata /s

360 Concurrent job

~65% CPU load on Front end RUCIO server

Only Apache CPU shows high load. Easily remedied by more front end server.
Metadata Import

- Metadata were then gradually imported to the production instance of Rucio in a background mode. (i.e. no service downtime required).
 - First import of “accounting” metadata
 - Then import of generic metadata
- No issue was observed during or after the metadata import
- Space occupied on the database by table and indices scales linearly with the number files registered in Rucio
 - 1kB/file
 - Allows to provision DB hardware for coming years.

![Graph of Total Size (Bytes) vs Time]
Metadata registration workflow:

File level Metadata

- File metadata registration is done from pilot jobs.
- Follows the same workflow as AMGA registration.
- New request operation in DIRAC for Rucio metadata registration.
- Accounting metadata are registered at this point to file metadata.

DataBlock/Dataset Metadata

- Dataset and Datablock Metadata are registered via a sub-system in BelleDIRAC for AMGA.
- We follow the same procedure of Dataset metadata in Rucio.
- Datablock metadata is registered from pilot in Rucio.
Metadata Service workflow:

- Choice of service to use for metadata registration is configurable.
- Configuration parameter are set in DIRAC configuration system.
- Choices:
 A. Only AMGA (Rucio off).
 B. AMGA and Rucio. (Request operation is done by AMGA)
 - Results in some inconsistency and will be handled by manual check machinery.
 C. Rucio Only. (Turn on registerRucio request operation.)

We are going with option B in our initial Phase.
Benefit of Rucio Metadata

• Have accurate accounting based on the file metadata (already in production)

• Same API from RucioFileCatalogClient for metadata.

• Single system to maintain. (If only Rucio is used)

• Scalability of Rucio is already proven and can handle high luminosity era of Belle II.

• Migration from AMGA to Rucio is shown. (Gradual Migration with both and then only Rucio possible.)

• Scalability of user project submission.
Conclusion:

- We presented here the work done to integrate Rucio metadata into Belle II's computing framework:
 - New developments allow to cover all Belle2 workflows already supported by the current metadata service
 - The different tests performed show that Rucio is able to handle Belle II’s need

- Workflow for Rucio metadata at Belle II is developed and tested.

- Rucio as a additional metadata service is expected to happen in the coming days.