

FTS Service Evolution and LHC Run-3 Operations

CHEP 2023

Presenter: Steven Murray

Authors: Joao Pedro Lopes, Shubhangi Misra, Steven Murray and Mihai Patrascoiu

Thursday 11th May 2023

What is FTS?

- The File Transfer Service (FTS) queues, schedules and executes file transfers
- Used across the Worldwide LHC Computing Grid (WLCG)
- A typical FTS instance:

How users interact with FTS

- Users submit file-transfer requests to FTS using command-line tools or a HTTP API
- Users can monitor the current progress of their transfers via FTS web pages
- FTS relies on the Data Management Clients (DMC) project (same team):
 - Grid File Access Library version 2 (GFAL2)
 - GFAL2 Python bindings
 - GFAL2 command-line tools
 - Client library and command-line tools for HTTP file transfers DaviX
 - SRM client library for GFAL2 and FTS SRM-IFCE
 - Secure gSOAP client and server libraries CGSI-GSOAP

Internal team		
Mihai Patrascoiu	Project leader	CERN
Steven Murray	Service manager	CERN
João Lopes	C++ / Python developer	CERN
Shubhangi Misra	C++ / Python developer	CERN

External contributors		
Ed Dambik	C++ developer	ATLAS / Indiana University Bloomington, USA
Eraldo Silva Junior	Python developer	ATLAS / LHCb /CERN / CBF, Brazil

Many thanks to other contributor both past and present

Successful WLCG FTS file transfers per month - 2022

Data volume transferred during 2022 Top 5 WLCG FTS instances 834 PB

FTS Service Evolution and LHC Run-3 Operations

Migration from Python 2 to 3

- During 2022 Python2 has been removed from all the FTS components
 - Clients, REST interface and Web Monitoring
- Migration did not bring functional changes to end-users in any of the components
- New Python3 client is now distributed via <u>PyPI</u>
 - \$ pip install fts3
- New RPM is also available in the CERN repos (link) and EPEL
 - \$ yum install fts-rest-client
- Old C++ client package will also be deprecated after v3.12.x

Migration from Pylons to Flask

- New project was created with this migration: FTS-REST-FLASK
 - https://gitlab.cern.ch/fts/fts-rest-flask/
 - Flask was the chosen framework:
 - Big user community, good documentation, simplicity and a rich ecosystem
 - · Good integration with SQLAlchemy
 - No changes to the API
 - The goal was to copy the structure and code as much as possible to avoid breaking things
 - Running in production at CERN since February 2022
 - Distributed via RPM's in the FTS repositories [1]
 - \$ yum install fts-rest-server

[1] https://fts-repo.web.cern.ch/fts-repo/el7/x86_64/

CERN database deployment is "cloud" like OF FTS

- CERN Database on Demand (DBoD) service provides MySQL 8.0 databases to FTS
- Enables the CERN IT department to optimize the cost of running the FTS service
- The DBoD service priorities running hundreds of databases
- The FTS team and the DBoD service have made FTS more efficient to stay within the performance bounds of DBoD:
 - Optimized FTS query used to decide what to stage from tape
 - Running OPTIMIZE TABLE once a week allows for the MySQL RAM cache to warm up in less than 20
 minutes after a cold start
 - Migration to MySQL8
 - On-line Data Definition Language (DDL) operations (schema changes) remove the need to run with a dedicated and local flash drive storage solution
- A fully puppetized, replicated MySQL database running on dedicated hardware with local SSD storage is ready for use in case of any unforeseen problems

Deploying replica databases at CERN

- Each CERN FTS instance has its own database backend:
 - ATLAS LHCb
 - CMS
 Pilot
 - DAQ Public
- Each instance has a main and a replica database
 - Main Mission critical On-Line Transaction Processing (OLTP)
 - Replica Monitoring On-Line Analytical Processing (OLAP)
- The execution of fast mission critical database statements is isolated and protected from the execution of relatively slow and non-critical monitoring database statements
- A replica database could be used to recover the service if the main database failed

Quick overview of the tape REST API

- Modern and uniform way of managing tape data movements across the WLCG
 - Replacement for SRM
- Developed by EOSCTA, dCache and STORM as storages
- Developed by FTS/GFAL2 as clients
- Tape REST API Reference document [v1, May 2022]: Link
- GFAL2 v2.21.0 introduced support for the tape REST API
- Full support in FTS after v3.12.2:
 - Deployed in all CERN production instances since Jan 2023
 - Allows experiments to pass staging and archiving metadata to tape endpoints

///src/plugins/http/gfal_http_plugin.cpp#L1160
extern "C" gfal_plugin_interface gfal_plugin_init(...)
{
 //[...]
 http_plugin.bring_online = &gfal_http_bring_online;
 http_plugin.release_file = &gfal_http_release_file;
 http_plugin.archive_poll = &gfal_http_archive_poll;
 http_plugin.bring_online_poll = &gfal_http_bring_online_poll;
 http_plugin.abort_files = &gfal_http_abort_files;
 //[...]
}

The tape **REST API** within **FTS**

- FTS must allow experiments to access their tape storage in the Grid
- The QoS daemon of FTS manages the necessary tape operations (QoS ≈ tape):
 - Archive Monitoring:
 - After transferring a file, FTS tracks the file's transition from the disk buffer to tape
 - Allows experiments to mark on their catalogs data as safely stored on tape avoiding data-loss
 - Bring-online / Stage-in:
 - Brings data from tape storage to disk storage
 - Release file after recall:
 - When files are no longer needed on disk, FTS instructs the storage to delete them from the disk buffer
 - Crucial to manage small disk buffers
- FTS uses GFAL2 as the client library to talk to remote storages endpoints
- Support for the tape REST API was added to FTS via GFAL2

GridFTP is being phased out

Transfers per month managed by the CERN FTS instances

Future – Exascale Tokens for FTS

- X509 proxy certificates are the main authentication method used by FTS
- FTS currently provides "unrefined" token support for HTTP file transfers
- The "Exascale tokens for FTS" project has started:
 - FTS should allow storages to transition from X509 proxy certificates to 100% tokens
 - This is a 2 year project
- This work is a pre-requisite for the WLCG's transition from X509 certificates to tokens
- The main stakeholders are:
 - Worldwide LHC Computing Grid (WLCG)
 - Large Hadron Collier (LHC) experiments
- Authentication and authorization services
- European Grid Infrastructure (EGI) community

Storage providers

- Open Science Grid (OSG) community
- Current discussions center around how WLCG specific FTS should be:
 - Implementing WLCG specific workflows offloads and centralizes development work from Rucio, Dirac and small to medium sized experiments
 - Being fully generic allows FTS to be used by "everything"

Future – True micro-service model

- The current FTS daemons must all run on the same machine
- When a new FTS head-node is added an instance of each daemon is added
- FTS is effectively a "Monolithic micro-service" Is this a World first?
- To scale it should be possible to add machines dedicated to specific daemons
- We plan to decouple the FTS daemons so they can be deployed on different machines

The current situation

The future

Future - Outlook

- Will protocol simplifications allow us to consolidate effort on client data management tools?
 - GridFTP has nearly been phased out
 - SRM will eventually be replaced by the Tape REST API
- We would like to improve the FTS scheduler to:
 - Improve its predictability
 - The current splitting of scheduler decisions across all head-nodes breaks the strict FIFO order between some transfer requests
 - · Revisit the model used to take decisions
 - Should we support priorities source storage endpoints that send files to a common destination storage endpoint?
- Bottom-line Support Run-4!

