POSIX access to remote storage with OIDC AuthN/AuthZ

Carmelo Pellegrino (carmelo.pellegrino@cnaf.infn.it)
Davide Salomoni (davide.salomoni@cnaf.infn.it)
Federico Fornari (federico.fornari@cnaf.infn.it)
Ahmad Alkhansa (ahmad.alkhansa@cnaf.infn.it)
Alessandro Costantini (alessandro.costantini@cnaf.infn.it)

The work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license or copyright law is prohibited. By exercising any rights to the work provided here, you accept and agree to be bound by the terms of this license.
Introduction

• Several **emerging use cases** of experiments/collaborations needing **local POSIX access** to storage provided by INFN-CNAF:
 • Test-stand TEX for **Eupraxia** asks for **50 TB/year** to archive data to be stored on disk
 • The collaboration needs to access data via **POSIX** in read-write mode **from Frascati (Rome)**
 • The software use a single UNIX user reading and writing data on disk
 • **NEWSdm**: "Is it possible to access our **storage area** without worrying about token renewal, for example with **Rclone**?"
 • WLCG experiments would like to access **cloud storage** resources in a **POSIX-like** way
 • Multiple solutions are available (**Ceph, S3, CVMFS, CernBOX**), but which is the most suitable?
 • Many more expected
MinIO with Vault-delegated STS

• **Hashicorp Vault** is a software that allows to **securely store secrets**

• Vault can **interact** with **MinIO** to get temporary **S3 credentials**

• **Vault** can be configured to be accessed through **OIDC AuthN**
 • Vault **supports Indigo IAM**, the **OpenID Connect provider** developed by INFN-CNAF

• Vault can **supply Secure Token Service (STS)** functionality for MinIO

• A **policy** must be defined in **MinIO** and is **linked** to a **Vault role** to perform operations on **buckets** based on IAM token **groups** claim value
Tested Client Solutions

- Rclone
- s3fs-fuse

POSIX access with OIDC AuthN/AuthZ – Federico Fornari
Rclone

- **S3 credentials valid for 1h** in this approach, so how to keep your locally mounted bucket connected to the storage server when credentials expire?
- **Client application must** be smart enough to automatically refresh temporary S3 credentials
- Unfortunately, Rclone does not fit this requirement (at least for S3)

![Refresh AWS STS credentials](image)

Is there a way to refresh AWS credentials periodically? I’m currently passing them via environment variables.

Is getting the credentials something rclone should do? I don’t know anything about vault/STS!

At the moment rclone expects S3 credentials to be valid forever.
s3fs-fuse (s3fs-ovm-lib)

- **s3fs-ovm-lib** is a *shared library* (developed in C++) that performs **credential processing** of **s3fs-fuse** using:
 - `oidc-agent` C++ API to get an **access token** from Indigo IAM
 - **Vault** C++ API to obtain **S3 temporary credentials** from MinIO
 - https://baltig.infn.it/fornari/s3fs-oidc-vault-minio-lib
 - **s3fs-ovm-lib** takes care of **temporary S3 credentials updating** whenever s3fs-fuse detects expiration
AuthN/AuthZ workflow with s3fs-rgw-iam-lib

• An additional C++ credlib plugin (s3fs-rgw-iam-lib) has been developed for IAM AuthN with RADOS Gateway
 • https://baltig.infn.it/fornari/s3fs-rgw-iam-lib

• This library retrieves an IAM access token and gives it to Ceph RGW requesting for an S3 operation

• RGW verifies the validity of the IAM token and sends the operation request to Open Policy Agent in addition to information about the user

• A IAM-CEPH-OPA Adapter Python application keeps OPA updated with newly created users information from IAM

• OPA’s response depends on the available policies

• Upon OPA's affirmative response, s3fs gets temporary S3 credentials and mounts the bucket
Rclone + StoRM-WebDAV + CephFS

- INFN-CNAF is a **HTTP WebDAV** site (for **non-POSIX** storage)
- **Rclone** can **mount** a **StoRM-WebDAV** storage area (SA) providing **POSIX access**
 - For **WebDAV** remote storage, **Rclone allows** the user to **provide a command** (oidc-agent) for the application to **automatically renew tokens**
- **StoRM-WebDAV exports** data from **POSIX** file system (CephFS), **no object storage**
Scalability Tests – Testbed Setup

- Ceph testbed:
 - 4 server nodes
 - 4 client nodes
 - 2x10 Gbit NIC per node
 - 120 8TB HDD

- 3 Ceph client nodes host gateway services:
 - Rados GW
 - MinIO
 - StoRM-WebDAV

- 4 Ceph client nodes host client containers with s3fs/Rclone to mount personal buckets/storage areas and with fio to perform tests
Scalability Tests – Server Side Results

Average Throughput Comparison - Server

- Each point in the plots consists of the mean and relative error of 5 runs
- Each run is a fio sequential/random write/read of a single O(GB) file per client
- Throughput seen by Ceph cluster during the tests for the interested Ceph pool
Scalability Tests – Client Side Results

Average Throughput Comparison - Client

- **Throughput** seen by `fio` during the same tests
- **s3fs** (cache-enabled) yields **better read** performance w.r.t. Rclone
- **MinIO + CephFS** generally shows **better throughput** than RADOS GW
- **Rclone + StoRM-WebDAV** shows **poorer results** w.r.t. s3fs-fuse except for sequential write
Conclusions and future plans

• **s3fs-fuse** seems to be a *promising* application to *support* the *remote* storage local *mount* with OpenID Connect AuthN/AuthZ mechanism

• **Rclone** can be tuned with a series of parameters, but shows *poor* performance *out of the box* with respect to s3fs-fuse

• **MinIO** in combination with CephFS generally supports *slightly higher throughput* than RADOS GW

• **Future** tests may be done *increasing* the number of *client nodes* and involving *alternative WebDAV* storage services for **Rclone** (e.g. **ownCloud**)
THANK YOU VERY MUCH!
Scalability Tests – Server Results

Average IOPS Comparison - Server

- Each point in the plots consists of mean and relative error of 5 runs.
- Each run is a fio sequential/random write/read of a single O(GB) file per client.
- These are the IOPS seen by Ceph cluster during the tests for the interested Ceph pool.
Scalability Tests – Client Results

Average IOPS Comparison - Client

- Each point in the plots consists of mean and relative error of 5 runs
- Each run is a fio sequential/random write/read of a single O(GB) file per client
- These are the IOPS seen by fio during the performance tests