Nordic Data Lakes
Success Story

NelC NT1 Manager
Mattias Wadenstein
<maswan@ndgf.org>

2023-05-11
CHEP, Norfolk, USA
Overview

- Concept
- Components
- Collaboration
- Current status
- Challenges
- Conclusion
Concept

• Starting with a distributed Nordic tier-1 site
 – Supporting ALICE and ATLAS
• One storage element spanning many sites in different countries
• Many independent computing resources connected to the same storage
• Could we build a wider data lake on this with further collaboration?
Concept

- Nordic
 - Involving the Nordic countries
 - For us: Denmark, Finland, Norway, Sweden
 - Note: This work has not received funding by the European Union or the ESCAPE project

- Data Lakes
- Success
- Story
Concept

• Nordic
• Data Lakes
 – A data lake is a repository of data
 – That can be transformed [into science]
 – Covers a geographical area
• Success
• Story
Concept

• Nordic
• Data Lakes
• Success
 – For a research infrastructure improvement project:
 – Provides greater value to researchers at the same cost
 – At a lower cost for the same value
 – Or both
 – Can only really be evaluated after it is used in production
• Story
Concept

• Nordic
• Data Lakes
• Success
• Story
 – A narrative, an account of events
 – Here told in slides and spoken word
Component: Distributed dCache

• dCache architecture
 – Lots of microservices that can communicate over WAN
 – Local “movers” at data storage pools where data is transferred
 – Common namespace and authorization components

• Nordic innovation
 – Multiple tape backends (hsminstances)
 – Better redirect support to pool movers for serveral protocols
 – High Availability improvements for core component upgrades without user impact
Component: Distributed dCache

- PnfsManager
- SRM1
- Webdav1
- Gridftp1
- PnfsManager
- Xrootd1
- Webdav2
- SRM2
- ZooKeeper1
- ZooKeeper2
- ZooKeeper3
- Vega Disk
- Umeå Disk
- Oslo Disk
- Bern Disk
Component: Distributed dCache

• Large set of guidelines for buying and running pools for our site admins:
 - https://wiki.neic.no/wiki/DCache_Pool_Hardware
 • RAM, CPU, MB/s/TB, etc. Supposed to be easy to turn into procurement.
 - https://wiki.neic.no/wiki/DCache_Pool_installation
 • Checklist for everything needed to be a pool in operations
 - https://wiki.neic.no/wiki/Operations_Tuning_Linux
 • Large TCP windows + BBR, Linux VM settings, some HW raid quirks

• Local site admins runs hardware, storage, and OS
• Central ops run dCache in unpriviledged user
 - Ansible for handling pool tasks with good scalability
Component: ARC with datastaging

- ARC-CE can do data staging
 - Prepares all input files needed by the job before submission to batch system
 - Saves all requested outputs to remote storage afterwards
 - Cache for reuse of input files between jobs
Component: ARC with datastaging

• ARC in data caching mode
 – Each job description has a list of input and output files (rucio://...)
 – The CE stages all these files to local cache and links them in the session directory
 – The job is submitted to batch system and runs on local files only
 – Afterwards the listed output files are uploaded to SEs
 – Transfers over https, so same path as data movement

• Caches are normal shared filesystems
 – NFS, CephFS, GPFS, Lustre, etc
 – Size reasonable for SSD for ATLAS: 20TB + 5TB/1kcore
Component: ARC with datastaging

• Overall efficiency
 - Data access is on low-latency local filesystems
 - Download before submission to batch system → better CPU efficiency
 - E.g. 47% → 90% CPU efficiency [M Pedersen, CHEP 2019]

• Non-local storage
 - Like NDGF-T1 with distributed storage
 - Or a “compute only” site

• Limited external connectivity
 - Like HPC sites where external connectivity might be blocked or only available through a slow NAT
Components

- Reliable
- dCache pools
- ARC Cache

Fast
Cheap
A Hexagonal Data Lake

- Staging makes ARC location agnostic
- Setting to prefer “local” (T1) data
- No problem getting some data to/from other sites
- Fast internal network to keep CPUs full
Collaboration

• Motivation: Lower cost
 - Managing storage elements including user support is non-trivial
 - The distributed nature has some overhead, but the reference comparison of 4-6 tier2 sites in the Nordic countries is on par
 - Adding more storage sites at very low marginal cost to NT1 saves on staffing, running pools (including procurement and commissioning) takes about 10% FTE.

• Motivation: Better value
 - Many small storage elements provide less value than a few large
 - Higher overall reliability, in particular for data taking (i.e. useful for job output destination)
Collaboration

• A successful data lake is a successful collaboration between:
 - Funding agencies – usually one in each participating country
 - Sysadmins – NeIC central team and site admins at each site
 - Physics projects and their PIs – one to two per country for us
 - Networking providers – NORDUNet, GEANT, CERN, plus all NRENs
 - Researchers – the entire purpose of research infrastructure
 - Experiment coordinators – ALICE and ATLAS currently
 - Scientific computing centers – Nine currently participating
 - Coordinating body – Nordic e-Infrastructure Collaboration, NeIC
 - etc
 - etc
Collaboration

• Real-time communication in chat rooms for operational issues
• Regular meetings and other forums for coordinating with stakeholders
• Tickets, issues, applications, evaluations, ...
• Many emails
Collaboration

• Most recent onboarding: University of Bern
 - ATLAS Tier-2
 - 1.8 PB
 - Was running DPM, this a the DPM migration path
 - For process details, see HEPiX Spring 2023 presentation: https://indico.cern.ch/event/1222948/contributions/5320953/

• Other tier-2s integrated:
 - Slovenia (IJS and Vega)
 - Sweden (pledges both part of T1 and T2)
Current Status

- Four Nordic countries plus Slovenia (IJS & Vega) and Switzerland (Bern) connected to one dCache
 - 8 PB ALICE disk
 - 23 PB ATLAS disk
 - 19 PB ALICE&ATLAS tape
- Serving 50k-200k cores compute, T1+T2
 - depending on Vega fill situation
Current Status

• ALICE: Normal Nordic Tier-1, not widely distributed
 – No local caching → worse CPU efficiency (avg a few percent)
 – Would get a bit worse if we had ALICE disk in southern Europe (RTT)
 • Could possibly be mitigated with Xcache

• ATLAS: Large data lake for disk
 – Much larger tier-1 disk area than our funded ambition of 6% of ATLAS tier-1 resources (currently second largest ATLASDATADISK area)
 • Tape is normal Nordic pledge of ~6% of tier-1 requests
 – Reliability usually on part with normal Tier-1s
 • A subset of transfer errors is shown harder to track down due to the distributed nature
 • On the other hand, a compute room power outage won’t affect data taking
 – ATLAS finds more value in larger and more reliable storage elements
Challenges

• Reduced visibility for contributors
 - Is a share of tier-1 storage as visible as a dedicated tier-2?
 - SRR feature should be able to handle this for WLCG accounting
 - Challenging to implement: little documentation and complex interactions between different systems (SRR, WSSA, CRIC, ..)
 - This is the first production deployment

• Lowest performance needs to be good
 - Slowest pool/site per TB determines average throughput
 - Running out of site bandwidth or buying a batch of slow servers
Challenges

• Central operations needs long-term funding and continuity
 – Our funding agencies like to have competitive calls every 4/5 years, NeIC has 6 of them (4 relevant for tier-1 central operations)

• Engaging new sites possible but usually non-trivial
 – Agreements and trust needed on several levels
 – Technical compatibility with local site admins

• ATLAS only LHC experiment using local ARC cache
 – Fixing payloads to read local filesystem files probably less complex than some of the heavy lifting to run jobs on inconvenient HPCs
 – Other caching solutions might be viable
Conclusions

- We consider this a success: more value at lower cost
- We could integrate ~10 more storage sites into a single distributed storage for WLCG
 - Possibly more, but somewhere we start needing more staff than needed just to deal with the distributed Nordic sites → who pays?
- Supporting new experiments possible
 - Likely higher load for central team
 - Increased Nordic funding probably requires Nordic demand
- ARC with chaching for good compute efficiency
 - Even with storage far away
- Continuous improvement for a smoother future
Questions?