Fermilab (B) L.S. DEPARTMENT OF Office of Science

Object Stores for CMS data

Nick Smith, Bo Jayatilaka, David Mason, Oliver Gutsche, Alison Peisker, Robert Illingworth, Chris Jones (FNAL) CHEP 2023

9 May 2023

Rothko, Number 19 (1949)

Our inference pipeline

‡ Fermilab

Centrally managed data

Centrally managed data

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults CMS-NOTE-2022-008

Projected usage

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults CMS-NOTE-2022-008

Projected usage

Strawman

- What if we stored batches of events for each data product individually?
 - No more merge jobs!
- Most content does not change with re-processing
 - Even for UltraLegacy, already two MiniAOD versions
 - Keeping only new products would save a lot of disk

Data-tier scheme

MiniAOD Data product	KB per event	
	v1	v2
packed+pruned genParticles	5.7	5.7
slimmedElectrons	1.3	1.3
Others	48.7	48.7
Total	55.7	55.7

Numbers sourced from a CMS UL17 TTBar simulation file

Column scheme

MiniAOD Data product	KB per event	
	v1	v2
packed+pruned genParticles	5.7	-
slimmedElectrons	1.3	-
Others	48.7	-
Updated slimmedElectrons	-	1.3
Total	55.7	1.3

Object store vs. filesystem

- Traditional data storage technology: distributed filesystem
 - e.g. NFS, EOS, dCache, Lustre, HDFS*, ...
 - Often with remote access protocol (xrootd)
 - Files are concurrently read/writeable
- Popular new-ish technology: object store
 - Native remote access (http)
 - Objects are immutable (overwrite possible)

Breaking down the ROOT file

- Essentially storing (+ moving) smaller units
 - This is usually a bad thing

Intermodal container

Break-bulk cargo

Breaking down the ROOT file

- Essentially storing (+ moving) smaller units
 - This is usually a bad thing
- Calculated placement
 - Like a hash, client-side
 - Downside: cluster state change causes reshuffle
 - Consistent hashing to minimize movement

Break-bulk cargo

Object data format

🚰 Fermilab

9 May 2023 Nick Smith I Object Stores

8

Test cluster

- Ceph pilot cluster setup at FNAL
 - 9 retired dCache machines
 - Total 2 PB HDD, circa 2014-2018
 - 288 OSDs
 - Two servers for metadata
 - 20TB NVMe (32 OSDs)
- Edge machines for:
 - xrootd door to CephFS
 - Ceph management daemons
 - RadosGW
 - Implements S3 protocol
 - Auth: pre-shared key or OIDC token
- Obviously not production-grade
 - Good for us: experience with failures!

Client design

- Framework to evaluate alternative I/O strategies (github)
 - Mimics CMS event processor design: TBB thread pool + tasks
 - Easy to add new output modules, simulate event processing, and test I/O
 - Serialization of data products: ROOT TBufferFile
- Developed S3 source and output module in framework
 - Using <u>libs3</u> + libcurl for protocol, async event loop separate from thread pool
 - Key features:
 - Parallel stream compression
 - Asynchronous I/O
 - Row-wise to column-wise pivot
- In following slides: stress testing the RadosGW server
 - Using many clients in parallel

Storage efficiency

- Input: 80k event MiniAOD file
 - LZMA compression
- Various S3 output configurations tested
- For erasure-coded Ceph pools, minimum object granularity of k*4kiB
 - Implies wasted space (vs. overhead for data resiliency)
 - Wasted space for EC4+2 in % listed below

Write-only stress test

- Submit 1-core condor jobs
 - Read MiniAOD from FNAL dCache, write to S3
 - Handling up to 500 PUT/s
 - Past experience: can do ~1500 for smaller objects
 - Wrote 4.5 TB, 7.4 Mobj total
- Saturation at ~400 clients, ~400 MB/s*

Read-only stress test

- Submit 4-core condor jobs
 - Read from S3, decompress, deserialize
- Unable to reach saturation
 - Poor condor queue priority
 - Performance in line with single-machine scaling
 - (As shown at ACAT22)

Client performance considerations

 Client application CPU inefficiency driven by I/O latency: either waiting for inputs or to flush output

 By pre-fetching input stripes and using a "fireand-forget" output technique, CPU efficiency improves substantially

 When server is saturated, client CPU efficiency degrades significantly

	0: + - r r	40s 45s 50s 55s 60s 65s 70s 75s	✓ Thread ✓
ead	threaded_io_tes (TID: 24767)		🗹 🔜 Running
Three	TBB Worker Thread (TID: 25		Vaits
	TBB Worker Thread (TID: 25		✔ 🖮 CPU Time ✔ 📥 Spin and …
	TBB Worker Thread (TID: 25		CPU Sample
	threaded_io_tes (TID: 25142)		Task

Next steps

- Demonstrate use case: job 2 reads job 1 and input products concurrently
 - Best example of advantage for column-level storage?

Summary

- Object data formats provide new data management capabilities
 - Compared to current tier-based EDM file model
 - Reduce disk storage requirements for re-processing
 - Obviate the need to define data tiers
- In a prototype framework accessing a Ceph S3 service
 - On-disk data and metadata volume is as expected
 - Service scaling is promising: one RadosGW can serve ~400 client threads
- To fully utilize, more software development will be needed

Backup

S3Source design

Each box is a TBB task Color = task group

Product 1 has stripes read every 4 events

Product 2 has stripes read every 2 events

Label convention:

 $E^* = Event number$

i* = Global index

S3 vs. other Source/Outputers

- ROOT source similar to a CMSSW grid job
 - Read file via xrootd, server has CephFS (same cluster) mounted
 - No ROOT outputer due to bug
- PDS source: write whole events sequentially
 - Very good thread scaling (last data point = all cores on machine)
 - Writing to local file rather than remote server

Bandwidth inconsistencies

Ceph cluster prometheus metrics underreport the RadosGW bandwidth compared to server IP traffic & client aggregate bandwidth (recorded by application)

Bandwidth by HTTP Operation

3.5 Gbps IPV4 ~ 3 Gbps 5 Gb/s 2.5 Gbps 2 Gbps 0 kb/s 1.5 Gbps 1 Gbps -5 Gb/s 500 Mbps -10 Gb/s 0 bps 13:00 14:00 15:00 16:00 17:00 18:00 19:00 05-07 05-07 05-07 05-07 05-07 05-07 05-07 05-07 05-07 18

Server reported

Clients reported

Fermilab