400Gbps Benchmark of XRootD-HTTP third-party-copy Transfers

Aashay Arora, Jonathan Guiang, Diego Davila, Frank Würthwein, Justas Balcas, Harvey Newman

UC San Diego Caltech

Introduction / Motivation

- The High-Luminosity LHC era will bring huge data challenges. We predict, ATLAS and CMS combined will accumulate on the order of an exabyte of raw data every year [1].
 - ESNet quotes (for T2 sites), "[Throughput] projections for the HL-LHC, with a planned start in 2027, are a 100 Gbps average over the year, with 400 Gbps bursts lasting hours" 1
- make sure it can support this high throughput.
- HTTP third-party-copy (HTTP-TPC) is now the default for data transfers between LHC sites.
- In the US, all Tier 2 centers support XRootD for data access. \bullet
- What configuration of HTTP-TPC + XRootD give us the throughput we need? What are the minimum hardware requirements to run this configuration?

• Therefore, in addition to hardware upgrades, we need to verify the robustness of our software stack to

Previous Studies

- We studied the overhead of using XRootD-HTTPS over the globus protocol for data transfers
 - Transferred data over several 100Gbps links using the two protocols with varying RTTs between endpoints to test and compare the throughputs
 - Concluded that XRootD-HTTPS performs slightly better on average over high throughput links. [2]

Throughput >= 30Gbps Throughput >= 10Gbps Throughput < 10Gbps Unable to retrieve data Check has not yet run Down for maintenance

- We benchmarked the performance on empty-links on low latency networks (Microsoft Azure)
 - We were able to get ~ 1 Tbps within the same region
 - Want to test over higher RTT

Current Hardware Setup

- We have 13 data-transfer-nodes (DTNs) at Caltech (Full <u>Specs</u> in backup)
- 1 **BIG** DTN at UCSD
 - 2 x AMD EPYC 7763 64-Core Processor (with SMT)
 - 2.0 Ti Memory
 - 3 x 200 G Links (ConnectX-6)
- All hosts managed using Kubernetes
- Running 3 pods on UCSD host (each running its own XRootD service and separate interface), and 1 pod on each Caltech Host
- Dedicated network paths provisioned using SENSE-Autogole

- XRootD configured in a cluster using a nonshared filesystem (each origin has its own set of files)
 - Multiple data origins subscribed to a single redirector.
- Both origins and redirectors configured with the HTTP(S) directive.
 - Authentication using X509
 - Macaroons for delegation and authorization.

Results

- We can reach 400* Gbps and sustain it for hours!
 - Well, 345 Gbps over a network path capable of doing 350 Gbps.
 - i.e. 520 streams coming out of UCSD

sense@sn3700:~\$ show interfaces counters -i Ethernet4,Ethernet16,Ethernet20,Ethernet124											
IFACE	STATE	RX_OK	RX_BPS	RX_UTIL	RX_ERR	RX_DRP	RX_0VR	TX_OK	TX_BPS	TX_UTIL	TX_ERR
TX_DRP TX_	OVR										
Ethernet4	U	8,982,229,719	36.80 MB/s	0.29%	0	0	0	60,127,506,940	9958.94 MB/s	79.67%	0
40,750,689	0								u g m.		
Ethernet16	U	9,002,491,671	38.91 MB/s	0.31%	0	0	0	58,470,633,925	11048.23 MB/s	88.39%	0
24,316,754	0								ulter.		
Ethernet20	U	8,847,434,599	31.74 MB/s	0.25%	0	0	0	60,157,515,021	9912.32 MB/s	79.30%	0
29,518,679	0								- the second sec		
Ethernet124	U	8,845,126,430	36.77 MB/s	0.29%	0	0	0	58,698,987,555	11940.03 MB/s	95.52%	0
26,414,746	0	, , , ,						, , , ,			

Using 40 streams of 1 GB files for each of the 13 servers with Caltech as sink,

= 345 Gbps

Interesting Findings

1. How does number of streams affect the throughput?

Not surprising, Drastically! Over the same 200 Gbps capable links

1 100GB file in-flight gives us **5 Gbps**

200 1GB files in-flight gives us **200 Gbps**

In fact, how is throughput parametrized by number of cpu cores and streams?

UC San Diego

Throughput vs. Number of CPU Cores and Number of Streams

2. What is the overhead of adding a redirector?

clusters as we do transferring directly between origins.

cluster-to-cluster (using redirectors): 500 streams

Almost None! We get the same performance transferring data between

origin-to-origin (manual load balancing): 40 streams per caltech host

3. How does the transfer tool affect throughput?

(write-then-delete-then-repeat)

We get slightly different performance when we transfer gfal-copy and curl

Conclusion + Summary

- HL-LHC era.
 - of CPU cores, number of streams, etc.
- Need at least $\mathcal{O}(10)$ streams per XRootD instance for ideal throughput.
- Use of redirectors does not affect performance.
- Choice of transfer tool does affect throughput.

XRootD-HTTP is capable of supporting the high throughputs required for the

• Systematically running transfers can enable us to parameterize by number

Acknowledgement

The authors would like to thank the different funding agencies for this work, in particular the National Science Foundation through the following grants: OAC-1836650, OAC-2030508, OAC-1836650, MPS-1148698 and OAC-1541349

References

- from https://escholarship.org/uc/item/78j3c9v4
- 10.1051/epiconf/202125102001

• Zurawski, J.; Brown, B.; Carder, D.; Colby, E.; Dart, E.; Miller, K., et al. (2021). 2020 High Energy Physics Network Requirements Review Final Report. In 2020 High Energy Physics Network Requirements Review Final Report. Lawrence Berkeley National Laboratory. Report #: LBNL-2001398. Retrieved

• Fajardo, E., Arora, A., Davila, D., Gao, R., Würthwein, F., & Bockelman, B. (2021). Systematic benchmarking of HTTPS third party copy on 100Gbps links using XRootD. EPJ Web of Conferences, 251, 02001. https://doi.org/

Backup

• We see interesting behavior when overwriting files,

With gfal-copy, we get 170 Gbps initially, then it drops down to 80 Gbps

Similar behavior with curl,

2023-05-09 02:16:00 trans vlan.4071 : 13.3 Gb/s trans vlan1.4071 : 20.5 Gb/s

02;15;10 02;15;20 02;15;30 02;15;40 02;15;50 02;16;00 02;16;10 02;16;20 02;16;30 02;16;40 02;16;50 02;17;00 02;17;10 02;17;20

rans vlan3.4071 :

20 Gb/s

Caltech Nodes' Specs

			-	
Server	CPU	Cores	Mem	NIC
sandie-1	2x E5-2667 v3 @ 3.20GHz	32 (HT ON)	16 x Kingston DDR4 16GB 2400	MT27700 ConnectX-4 (100
sandie-3	2x Silver 4110 CPU @ 2.10GHz	32 (HT ON)	12 x Micron DDR4 8GB 2666	MT27500 ConnectX-3 (400
sandie-5	1x AMD 7551P @ 2Ghz	64 (SMT ON)	8 x Kingston DDR4 32GB 2666	MT28800 ConnectX-5 (100
sandie-6	1x AMD 7551P @ 2Ghz	64 (SMT ON)	8 x Kingston DDR4 32GB 2666	MT28800 ConnectX-5 (100
sdn-dtn-1-7	2x E5-2687W v3 @ 3.10GHz	20 (HT OFF)	8 x Micron DDR4 16GB 2133	MT27700 ConnectX-4 (100
sdn-dtn-2-09	2x E5-2690 v2 @ 3.00GHz	40 (HT ON)	16 x Samsung DDR3 8GB 1600	MT27500 ConnectX-3 (400
sdn-dtn-2-11	2x E5-2670 v3 @ 2.30GHz	48 (HT ON)	16 x Micron DDR4 8GB 2133	MT28800 ConnectX-5 (100
neu-sc-01	2x E5-2667 v4 @ 3.20GHz	32 (HT ON)	8 x Hynix DDR4 16GB 2133	MT28908 ConnectX-6 (100
sdn-sc-03	2x E5-2667 v4 @ 3.20GHz	32 (HT ON)	8 x Hynix DDR4 16GB 2133	MT28908 ConnectX-6 (100
sdn-sc-04	2x E5-2667 v4 @ 3.20GHz	32 (HT ON)	8 x Hynix DDR4 16GB 2133	MT28908 ConnectX-6 (100
sdn-sc-05	2x E5-2667 v4 @ 3.20GHz	32 (HT ON)	8 x Hynix DDR4 16GB 2133	MT28908 ConnectX-6 (100
sdn-sc-06	2x E5-2667 v4 @ 3.20GHz	32 (HT ON)	8 x Hynix DDR4 16GB 2133	MT28908 ConnectX-6 (100
sandie-9	2x E5-2667 v3 @ 3.20GHz	32 (HT ON)	8 x Hynix DDR4 16GB 2133	MT28800 ConnectX-5 (100

Plot Showing 300 Gbps sustained

Plot showing throughput vs. latency

