
Data popularity
for the Cache Eviction Algorithms

using Random Forests
Olga Chuchuk1,2, Markus Schulz1

(1) CERN, IT-GOV Group

(2) University of Côte d’Azur

111 May 2023CHEP 2023, Norfolk, VA, USA

Motivation for research:
Improving Cache Performance for Remote Physics Analysis

2

Ways to perform analysis remotely in the WLCG:

• The file can be read (therefore, moved or replicated) before the computation starts

• The file can be streamed while the computations runs (but removed from the processing node right after)

• The file can be cached (also streamed during the computation and saved in the cache).

𝐵𝑦𝑡𝑒𝑠 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 𝐵𝐻𝑅 =

=
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑎𝑐ℎ𝑒

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑏𝑦𝑡𝑒𝑠

𝐵𝑦𝑡𝑒𝑠 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝐵𝑀𝑅 = 1 − 𝐵𝐻𝑅

Data popularity for the Cache Eviction Algorithms using Random Forests

Data access trace

3

Log data sources:
1. EOS Report Logs (CERN)
2. Rucio Logs

Total number of reads
N = 5.6e8

Total number of files
M = 1.2e7

Total number of datasets
D = 2.9e5

Average File Size
2.13GB

Max File Size
51.30GB

CERN ATLAS EOS node, 3 months (Feb-Apr 2022), AOD & DAOD files only

Comparing caching algorithms

4

Least Recently Used (LRU)
• Easy to implement and maintain
• Performs well on this trace

Cache performance plots:
• Decays from 1 to a particular value as the

cache size increases
• Cold misses determine the min value
• Allow to compare the performance of

different cache eviction policies

Lower Bound of the Optimal Policy(∗)
• Optimum is NP-hard to construct
• Only theoretical as requires the

knowledge of the future reads

Data popularity for the Cache Eviction Algorithms using Random Forests

(∗) Chuchuk, O., Neglia, G., Schulz, M., & Duellmann, D. (2022, March). Caching for dataset-based workloads with
heterogeneous file sizes. In ISGC 2022-International Symposium on Grids & Clouds 2022.

Previous attempts to improve BMR

5

Directions that we explored:
• Existing cache eviction policies (like 2-

LRU and 2-staged LRU)
• Dataset-specific policies (having in mind

that files within one dataset tend to be
read together)

Why is our problem different?
• Optimization of the BMR
• Different from CDNs and Web

• File size
• Number of users

Data popularity for the Cache Eviction Algorithms using Random Forests

Performance of the clairvoyant algorithm

6

When applied to our trace:
• Approaches optimum
• Significantly outperforms LRU

The clairvoyant algorithm (or Belady):
• Removes the files that will be used

the furthest into the future.
• Only theoretical as requires the

knowledge of the future.
• Performs optimally when the file

sizes are equal.

Data popularity for the Cache Eviction Algorithms using Random Forests

Architecture of the ML-based approach

7

Features of
existing files

Predicted time
(or probability) of

file reuse

Cache eviction
decisions

Predicting future
file reads

Integration into the
caching model

… …… …… …… … … …… …

…

(Random Forest model):

Random Forest advantages:
• Classification and regression
• No need for feature

normalization
• Parallelizable
• Interpretable

Data popularity for the Cache Eviction Algorithms using Random Forests

Prediction of the file reads. Regression
Predicting the logarithm of the reuse distance

8

Features: Target:

Threshold

Filtering stage Number of
files

Percentage
of files

Before the threshold 10,556,833 88.98%

With 2+ accesses 4,719,609 39.78%

With creation time 2,378,787 20.05%

With target access 342,878 2.89%

Results:
0.29 – RMSE* on the
training data (70%)
0.34 – RMSE on the
test data (30%)

*RMSE = Root Mean
Squared Error

Data volume:

List of features:size
(volume)
• File size
• Dataset size

(volume)
• Frequency of the

reads
• Recency of the reads
• Duration of the reads
• Dataset size (number

of files)
• …

(18 features in total)

Data popularity for the Cache Eviction Algorithms using Random Forests

Prediction of the file reads. Classification
Predicting if reread in the next 15 days

9

Features: Target:

Threshold

Results:
0.11 – RMSE on the
training data (70%)
0.12 – RMSE on the
test data (30%)

0.99 – AreadUnderROC*
on the training data
0.99 – AreadUnderROC
on the test data

Data volume:

List of features:size
(volume)
• File size
• Dataset size

(volume)
• Frequency of the

reads
• Recency of the reads
• Duration of the reads
• Dataset size (number

of files)
• …

(18 features in total)

Filtering stage Number of
files

Percentage
of files

Before the threshold 10,556,833 88.98%

With 2+ accesses 4,719,609 39.78%

With creation time 2,378,787 20.05%

After target balancing 686,942 5.79%

*ROC = (Receiver Operating
Characteristic). Plots the true
positive rate (TPR) against
the false positive rate (FPR)

Data popularity for the Cache Eviction Algorithms using Random Forests

Feature importance

10

• Feature importance is calculated
based on how frequently the feature
is chosen for a split, and the
subsequent decrease in the impurity
of the decision tree nodes.

• The higher the feature importance
score, the more important the feature
is for the model's predictions.

• Dataset-related features tend to
contribute greatly to the models, as
well as the recency (last read, last
dataset read).

Data popularity for the Cache Eviction Algorithms using Random Forests

ML model with the features existing in the trace

11

List of features
(6 in total):size
(volume)

• File size

• Time of last read

• Duration of last read

• Dataset size (volume)

• Dataset size (number of files)

• Time of last dataset read

Regression:
0.43 (0.29) – RMSE on the train data (70%)
0.46 (0.34) – RMSE on the test data (30%)

Classification:
0.19 (0.11) – RMSE on the train data (70%)
0.19 (0.12) – RMSE on the test data (30%)

0.98 (0.99) – AreadUnderROC on the train data
0.98 (0.99) – AreadUnderROC on the test data

Data popularity for the Cache Eviction Algorithms using Random Forests

Realistic cache implementation
High and Low Watermarks

12

• High and Low Watermarks indicate the
maximum and minimum amount of data
that should be stored in the cache.

• When the high watermark is hit, the
cache cleaning processed is triggered:
based on the implemented cache
eviction policy, the files are evicted until
the low watermark is reached.

• As expected, the performance is slightly
worse than that of the original algorithm,
but not significantly.

• Advantage: the cache cleanup is only
run once in a while. Less load on CPU.

Data popularity for the Cache Eviction Algorithms using Random Forests

Comparing ML-based models with LRU

13

• When the high watermark is hit, prediction is
run on all the files present in the cache. We
then sort them based on the predicted reuse
distance (or probability to be reused) in
order to be evicted from the cache.

• Model with classification permofrms better,
but still not able to beat LRU.

• When the cache size is 2-5 %, the difference
between 1-2 days of reuse and 1-2 weeks
becomes more crucial.

Data popularity for the Cache Eviction Algorithms using Random Forests

Evaluating ML model real performance

14

Why the models perform poorly on the actual

trace:

• ~60% of the files were used only once.

• The prediction was limited to a 15-day period.

RMSE on the test data: 0.46

1.611.79

1.99

2.12

2.39

1.94

Average prediction scores

Cache size # of cache
cleanups

100% 0
72% 4
36% 18
18% 53
9% 136
4% 319
2% 724

Data popularity for the Cache Eviction Algorithms using Random Forests

1. The LRU replacement policy exhibits satisfactory performance on our trace.

2. There is scope for enhancements to the existing approach, at least theoretically.

3. Our research has demonstrated that surpassing LRU is challenging (supported by the
feature importance distributions obtained from the ML models).

4. The challenge is not solely to predict future reads, but also to select the most
appropriate way to integrate the predictive model into caching. Possible alternative
ways to do so:

1. Expanding the training dataset.
2. Different combinations of ML models can be explored.
3. Optimizing the hyperparameters remains an area of opportunity.

Conclusions

15Data popularity for the Cache Eviction Algorithms using Random Forests

16

Thank you for your attention!
Any questions?

Olga Chuchuk
CERN, IT-GOV group
olga.chuchuk@cern.ch

Data popularity for the Cache Eviction Algorithms using Random Forests

Backup Slides

17

My data processing pipeline

18

Input Data

Nature: storage log files; >60 metrics: fid,
access time, file size, read/written bytes, etc.
Format: .eosreport.gz, collected from EOS
headnodes
Size: from 100MB to 8GB per day per
experiment

EOS Report Logs

Rucio Logs
Nature: Rucio database dumps, contains
information about active datasets
Format: collected from HDFS
Size: almost 50GB for 3 months

Processed Data

Nature: slimmed, adapted to
each Cache Eviction Policy
Format:.csv files, ordered by
timestamp
Size: From 2 to 6GB for 3
months

Ordered Trace

Nature: data after parsing,
filtering, groupping and
merging
Format: .parquet files
Size: From 600MB to 7GB
per month (reduction rate is
±30).

Intermediate Files

Plots and Statistics

Results
pySpark pySpark

Python
PySpark

C++
Python
PySpark

19

20

21

Dependency between the file lifetme and the
number of accesses

22

Time between consecutive reads

23

Time between the first file accesses within a dataset

24

25

26

Variance of the number of reads per dataset

27

D
at

as
et

 c
ou

nt

Decision Trees (DT) and Random Forests (RF)

28

Decision Tree:

… … … …

… …… …… …… … … …… …

…

DT 1: DT 2: DT N:

Random Forest:

+ Classification and regression
+ Easy to interpret
- Prone to overfitting

+ Classification and regression
+ Can be parallelized
+ Solve the overfitting issue
+ Able to handle high-dimensional data and noise
- More complex to interpret

Feature importance

29

