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Motivation S
e Small time-to-insight drives high physics potential
e Improved throughput important for HL-LHC

Computing Stages & Enhancements
1. Ingestion: i.e. reading from file
=» Caching (intelligent, transparent)

2. Processing: computations & filtering A
-> Compute Offloading enable more precise
3. Aggregation: counting & histrogramming Resource Allocation
=*> Memory Offloading D

( )
RAM fneage
cores GPUs RAM storage
Context _RAM _ 9

e small institute cluster

=*» need to make effective use 2 r' daSk

e our implementation: coffea + Dask + HTCondor @
-» but, principles apply generally coffe a HTCOHM

High Throughput Computing
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e Ciritical bottleneck: streaming data to processing elements
e Available: various storage types & locations
e Solution: two tiered persistent caching

1. central network storage (NFS)

2. on Worker SSD (FSCache)

‘WLCG ~ Storage ~ -Worker

7

wWLCGG *

Worldwide LHC Computing Grid

O(PB) O(100TB) O(1TB) O(10GB) O(MB)
O(100MB/s) O(100MB/s) O(500MB/s) O(100GB/s) O(TB/s)
Many users Stores experiment Needs only fraction of data which

High latency data for our group is processed by this worker

. ) L y .
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e Use worker’s SSDs for caching
e Software implementation: FSCache + cachefilesd
o Transparently caches:
m file access (read & write)
m enabled per NFS-mount
o Granularity: Page size (4kB)
o Strategy: Least recently used (LRU)
m prone to trashing
o Part of Linux Kernel (ideally =5.4)
e Great for caching of:
o software, e.g. conda environments
o event files, e.g. NanoAOD’s .root files
o DNN training data, e.g. .npy files

Performance example: DNN training /
e serves sustained 4.6 GB/s across whole cluster
e comparison: same bandwidth via central server far more difficult
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e Aim: ensure persistent Worker < Job assignment
o translates to FSCache-Instance < Input-Data
=*» minimizes cache thrashing due to LRU strategy
e Assign reproducible identifiers to: Workers & Jobs
o using cryptographic hash function =¥ uniformly distributed
o produces 64-dimensional embedding: x% with x €[0...255]
o interpreted as position vectors

e Assign Job to closest Worker (L? distance) v _0 @ Vol
e Extra tricks for Workers: ‘ o B,
o multiple distinct positions per Worker \ P el
=*» more uniform distribution despite O
the low number of total Workers
o additional distance factor per Worker \ D ‘
-» incorporates varying ‘V@ O O/
computational throughput NG /
e Resilience: handles perturbations well O O
o needed for changing Workers/Jobs Q
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e Pure read-only task run 10 times (cycles) with 220 workers (no computations)
o isolate & highlight 10 performance
e “Processed” Data: Higgs pair production analysis
o 1.3 TB, 10° events, 120 columns, nanoAOD
o read-optimised compression algorithm (Z-std, 10)
e Results: cache effect well visible
o gradual convergence to perfection due “work stealing”
o runtime lower bound: CPU — |O Bottleneck overcome
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Idea
e offload onto specialized hardware i.e. GPU
e works well with heavy workloads:
o esp. DNN evaluation
o possibly even fits/ME-calc.

Advantages
e batching possible/needed
o favors columnar data processing
o automatic batching possible
e enables parallel/async processing
e also has Memory Offloading benefits

Implementation
e using Tensorflow Modelserver

e single low-end GPU sufficient f
o 10° events/hour TensorElow

Benjamin Fischer, May 9" 2023
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Antipattern memory
_ _ _ _ Intensive
excessive buffering of intermediate output workload

=* footprint of workload varies a lot

=¥ poor resource allocation use resource compute workload
allocation

Histograms: pathological affected

e esp. when multiple workloads produce Offloading

same histograms to be summed later
=» unnecessary copies

compute workload

Solution: eagerly aggregate outputs

: L. Streaming
e opportunity for centralization
. memory
Implementation intensive
workload
e data streamed (decoupled from MapReduce) Memory

e transparent via custom coffea Aggregator
e communication via Dask (Actors) Time
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e Context: small institute cluster
e (Goal: increase utilization/throughput

Enhancements
e Caching =» decrease |0 stal| 220.08598
opportunistic (use what’s available)
tiering (storage distribution)
ease of use (fully transparent)
resilience (thrashing mitigation)
e Offloading =» improve utilisation
> (Compute ~: DNNs onto central GPU
> Memory ~: histograms into dedicated job
o better fitting allocation possible

o O O O

Transferable
e principles apply in general
e also relevant for e.g. XCache, RDataFrame, ...

GB
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e MapReduce via Dask via HTCondor ﬁ DASK

o enables dynamic workload distribution

across resources as they get available I'".COﬂd()r
High Throughput Computing
Portal node (direct user access):
. , s N
e central coordination & scheduling 4 - Reduce
e runs Reduce tasks: g [|Coordination
_ 15 & Reduce
o merges outputs (e.g. histograms) o | Scheduling
o in- & output size highly variable .\ Reniize )
Worker pool (via HTCondor): ' )
bl iabili = HTCondor Job || HTCondor Job
e variable availapllity g Dask Job Dask Job
e runs Map tasks: S § Map Map
o the actual processing workload 'f]:) - -
o fairlv h tootorint = ideal =2 Dask Job Dask Job
airly homogeneous footprin idea 5 Map Map
for statically booked Job resources \ J

-
-
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e Keep local experiment data copies:
o Easy and reliable access (no timeouts, credentials, ...)
o Direct connection to worker nodes (low latency, 10GBit)
e Storage qualities:
o /home: User homes (mirrored, backup, low latency)
o /store: Experiment data (mirrored, high capacity)
=» /scratch: Experiment data (for copies i.e. reproducible/redownloadable)
m optimized for high read throughput
m RAIDO: not mirrored, but striped (across multiple HDDs)

Block 2 Block 3

Block 5

Block 6

Block 8 Block 9




