
Transferable Improved Analyses Turnaround through 
Intelligent Caching and Optimized Resource Allocation

Svenja Diekmann, Niclas Eich, Martin Erdmann, Peter Fackeldey, 
Benjamin Fischer, Dennis Noll, Yannik Rath

CHEP 2023 - Track 1
May 9th 2023



Benjamin Fischer, May 9th 2023
Outline2

Motivation
● Small time-to-insight drives high physics potential
● Improved throughput important for HL-LHC

Computing Stages & Enhancements
1. Ingestion: i.e. reading from file

➜ Caching (intelligent, transparent)
2. Processing: computations & filtering

➜ Compute Offloading
3. Aggregation: counting & histrogramming

➜ Memory Offloading

Context
● small institute cluster

➜ need to make effective use
● our implementation: coffea + Dask + HTCondor

➜ but, principles apply generally coffea

enable more precise 
Resource Allocation



Benjamin Fischer, May 9th 2023

● Critical bottleneck: streaming data to processing elements
● Available: various storage types & locations
● Solution: two tiered persistent caching

1. central network storage (NFS)
2. on Worker SSD (FSCache)

Caching: Storage Hierarchy3



Benjamin Fischer, May 9th 2023
Worker Caching (FSCache)

● Use worker’s SSDs for caching
● Software implementation: FSCache + cachefilesd

○ Transparently caches:
■ file access (read & write)
■ enabled per NFS-mount

○ Granularity: Page size (4kB)
○ Strategy: Least recently used (LRU)

■ prone to trashing
○ Part of Linux Kernel (ideally ≥5.4)

● Great for caching of:
○ software, e.g. conda environments
○ event files, e.g. NanoAOD’s .root files
○ DNN training data, e.g. .npy files

Performance example: DNN training
● serves sustained 4.6 GB/s across whole cluster
● comparison: same bandwidth via central server far more difficult

4



Benjamin Fischer, May 9th 2023
Cache Affinity

● Aim: ensure persistent Worker ↔ Job assignment
○ translates to FSCache-Instance ↔ Input-Data

➜ minimizes cache thrashing due to LRU strategy
● Assign reproducible identifiers to: Workers & Jobs

○ using cryptographic hash function ➜ uniformly distributed
○ produces 64-dimensional embedding: 𝕩64 with 𝕩∈[0…255]
○ interpreted as position vectors

● Assign Job to closest Worker (L2 distance)
● Extra tricks for Workers:

○ multiple distinct positions per Worker
➜ more uniform distribution despite

the low number of total Workers
○ additional distance factor per Worker

➜ incorporates varying
computational throughput

● Resilience: handles perturbations well
○ needed for changing Workers/Jobs

5



Benjamin Fischer, May 9th 2023

● Pure read-only task run 10 times (cycles) with 220 workers (no computations)
○ isolate & highlight IO performance

● “Processed” Data: Higgs pair production analysis
○ 1.3 TB, 109 events, 120 columns, nanoAOD
○ read-optimised compression algorithm (Z-std, 10)

● Results: cache effect well visible
○ gradual convergence to perfection due “work stealing”
○ runtime lower bound: CPU → IO Bottleneck overcome

Cache Benchmark 2207.085986

https://arxiv.org/abs/2207.08598


Benjamin Fischer, May 9th 2023

Workload

Workload

Compute Offloading

Idea
● offload onto specialized hardware i.e. GPU
● works well with heavy workloads:

○ esp. DNN evaluation
○ possibly even fits/ME-calc.

Advantages
● batching possible/needed

○ favors columnar data processing
○ automatic batching possible

● enables parallel/async processing 
● also has Memory Offloading benefits

Implementation
● using Tensorflow Modelserver
● single low-end GPU sufficient

○ 109 events/hour

7

Workload
DNN

Workload
DNN

Workload
DNN

Offloading

Workload



Benjamin Fischer, May 9th 2023

Antipattern
excessive buffering of intermediate output

➜ footprint of workload varies a lot
➜ poor resource allocation use

Histograms: pathological affected
● esp. when multiple workloads produce

same histograms to be summed later
➜ unnecessary copies 

Solution: eagerly aggregate outputs
● opportunity for centralization

Implementation
● data streamed (decoupled from MapReduce)
● transparent via custom coffea Aggregator
● communication via Dask (Actors)

Memory Offloading8

compute workload

memory 
intensive
workload

Offloading

compute workload

memory 
intensive
workload

Streaming

resource 
allocation

Time

Memory



Benjamin Fischer, May 9th 2023
Summary

● Context: small institute cluster
● Goal: increase utilization/throughput

Enhancements
● Caching ➜ decrease IO stall 2207.08598

○ opportunistic (use what’s available)
○ tiering (storage distribution)
○ ease of use (fully transparent)
○ resilience (thrashing mitigation)

● Offloading ➜ improve utilisation
➢ Compute ~: DNNs onto central GPU
➢ Memory ~: histograms into dedicated job
○ better fitting allocation possible

Transferable
● principles apply in general
● also relevant for e.g. XCache, RDataFrame, …

9

https://arxiv.org/abs/2207.08598


Backup

10



Benjamin Fischer, May 9th 2023

W
or

ke
r P

oo
l

MapReduce + Dask + HTCondor

● MapReduce via Dask via HTCondor
○ enables dynamic workload distribution 

across resources as they get available

Portal node (direct user access):
● central coordination & scheduling
● runs Reduce tasks:

○ merges outputs (e.g. histograms)
○ in- & output size highly variable

Worker pool (via HTCondor):
● variable availability
● runs Map tasks:

○ the actual processing workload
(e.g. tuples ➜ histograms)

○ fairly homogeneous footprint ➜ ideal
for statically booked Job resources

11

P
or

ta
l

W
or

ke
r 1

…

HTCondor Job
Dask Job
Map …

HTCondor Job
Dask Job
Map

W
or

ke
r 2 HTCondor Job

Dask Job
Map …

HTCondor Job
Dask Job
Map

Coordination 
&

Scheduling

Reduce

Reduce

Reduce



Benjamin Fischer, May 9th 2023
Central Network Storage

● Keep local experiment data copies:
○ Easy and reliable access (no timeouts, credentials, ...)
○ Direct connection to worker nodes (low latency, 10GBit)

● Storage qualities:
○ /home: User homes (mirrored, backup, low latency)
○ /store: Experiment data (mirrored, high capacity)
➜ /scratch: Experiment data (for copies i.e. reproducible/redownloadable)

■ optimized for high read throughput 
■ RAID0: not mirrored, but striped (across multiple HDDs)

12


