

The Implementation of Data Management and Data Service for HEPS

Hao Hu*, Haofan Wang, Qi Luo, Fazhi Qi (On behalf of HEPSCC) Institute of High Energy Physics, CAS

speaker: Hao-Kai Sun

* email of the corresponding author **Hao Hu**: huhao@ihep.ac.cn

- **1. HEPS Introduction**
- 2. Demand and Challenges of data management
- 3. The architecture and design of the framework
- 4. The progress of the system implementation
- 5. Summary & Plan

2

1. HEPS Introduction

- 2. Demand and Challenges of data management
- **3. The architecture and design of the framework**
- 4. The progress of the system implementation
- 5. Summary & Plan

3

High Energy Photon Source (HEPS)

- The fourth generation light source in China High energy, high brightness
- Located in Beijing about 80KM from IHEP
- 15 beamlines at phase I
- The construction was started at the end of 2018
- The whole project will be finished in mid-2025

Main parameters	Unit	Value
Beam energy	GeV	6
Circumference	m	1360.4
Emittance	pm∙rad	< 60
Brightness	phs/s/mm ² /mrad ² /0.1%BW	>1x10 ²²
Beam current	mA	200
Injection		Тор-ир

Progress of the HEPS project

- The construction of the civil structure completed. Now at the stage of equipment installation
- **D** 2023.01, HEPS booster installation completed
- □ 2023.02, Start installation of storage ring
- 2023.03, HEPS achieved the first electron beam accelerated to 500 MeV.

1. HEPS Introduction

2. Demand and Challenges of data management

- **3. The architecture and design of the framework**
- 4. The progress of the system implementation
- 5. Summary & Plan

Data Challenges @HEPS

- □ Increased source brightness
 - More raw data in greater detail and less time
- X-ray detector capabilities constantly improving:
 - Increased dynamic range, faster readout rates, larger pixel arrays
 - Bigger frames, higher frame rates => more raw data
- >24PB raw data per month for Phase I (15 beamlines)
- More than 90 beamlines volume in total

Estimated data volume of HEPS

Beamlines	Burst output(Byte/day)	Average output(Byte/day)
B1 Engineering Materials Beamline	600TB	200TB
B2 Hard X-ray Multi-analytical Nanoprobe (HXMAN) Beamline	500TB	200TB
B3 Structural Dynamics Beamline (SDB)	8TB	ЗТВ
B4 Hard X-ray Coherent Scattering Beamline	10TB	ЗТВ
B5 Hard X-ray High Energy Resolution Spectroscopy Beamline	10TB	1TB
B6 High Pressure Beamline	2TB	1TB
B7 Hard X-Ray Imaging Beamline	1000TB	250TB
B8 X-ray Absorption Spectroscopy Beamline	80TB	10TB
B9 Low-Dimension Structure Probe (LODISP) Beamline	20TB	5TB
BA Biological Macromolecule Microfocus Beamline	35TB	10TB
BB pink SAXS	400TB	50TB
BC High Res. Nanoscale Electronic Structure Spectroscopy Beamline	1TB	0.2TB
BD Tender X-ray beamline	10TB	1TB
BE Transmission X-ray Microscope Beamline	25TB	11.2TB
BF Test beamline	1000TB	60TB
Total average:		805.4TB/day, 24.16PB/month

1. HEPS Introduction

- 2. Demand and Challenges of data management
- 3. The architecture and design of the framework
- 4. The progress of the system implementation
- 5. Summary & Plan

8

Data Flow

Tasks & Goals of Data Management

Data policy and Data Format

- The ownership, curation, archiving and access to scientific data and metadata
- HDF5 is chosen as the standard data file format, follows NeXus conventions

Metadata catalogue

- Support the management of the whole scientific data lifecycle
- Hierarchical storage: beamline storage \rightarrow central storage \rightarrow tape
- Catalogue and provide access to scientific metadata and raw experimental data

Metadata acquisition

Ingest metadata from other sub-systems(DAQ, transfer, storage, analysis...)

Data transfer

- Transfer all the data between beamline storage, central storage and Tape
- Interact with metadata catalogue when the data storage status changed

Data service

Provide a web-based GUI for user to search, access, download, analysis data

DOMAS-Data Organization Management Access Software

- Common function modules of data management
 - ✓ Metadata Model
 - ✓ Workflow
 - ✓ Data transfer
 - ✓ Data service
- Extensible and standard interface
- Be able to build data management system suitable for facilities/beamline quickly

1. HEPS Introduction

- 2. Demand and Challenges of data management
- 3. The architecture and design of the framework
- 4. The progress of the system implementation
- 5. Summary & Plan

HEPS Data Policy

The ownership, curation, archiving and access to scientific data and metadata

- Recommend providing at least 3 months disk storage and permanent tape archive (depends on final funding)
- Provide permanent storage for raw data
- Provide temporary storage for processed data, calibration data and result data
- Each dataset will have a unique persistent identifier(CSTR/DOI)
- Experimental teams have sole access to the data during the embargo period.
- After the embargo, the data will be released with open access to any registered users of the HEPS data portal.

A draft version of *The Data Policy for HEPS* is finished, which will be discussed and approved by the HEPS council. *Reference:*

http://pan-data.eu/sites/pan-data.eu/files/PaN-data-D2-1.pdf

https://in.xfel.eu/upex/docs/upex-scientific-data-policy.pdf

Data storage policy

Raw data produced from detector are saved to beamline storage directly, up to 7 days 1 Data transfer module moves data from beamline storage to central storage, data are kept up to 90 days 2 Data transfer module moves data from central storage to tape for permanent storage. 3 Data storage policy will be adjusted according to the actual data volume and funding situation 90 Days 7 Days Permanent Data transfer Writing Data transfer Detector **Beamline storage Central storage** Tape DAQ SSD • SSD+HDD • Permanent data archive system Medium-high speed • High speed data IO • Prepare the data before retrieve data IO

Data directory and ACLs

- One proposal have several experiments, each experiment is assigned beam time (BeamtimeID)
- □ Data path : ../ < Beamline > / < YearMonth > / Data / < BeamtimeID >
- User access is restricted by setting ACLs of file system on folder *BeamtimeID*
- **D** Users will be guided to use the directories accurately

Folder	Data type	Permission	Permanent archive?
raw	Raw data/user data	Read only	Yes
processed	Processed data	Read, write	No
scratch	Temp data, snapshots, scripts,	Read, write	No
share	Snapshots, scripts, shared files	Read, write, shared	No

Data directory structure

Metadata items to be cataloged

Metadata	Metadata Items	From	
◆ Administrative	Proposal Info, User Info, Exp type, Beamline		
Metadata	 Data type: raw data, processed data, simulated data, calibration data 	Proposal system, User service system,	
	• Dataset : PID, Path, Data file list, file size, checksum	 Iransfer system, Storage 	
	Status: disk/tape, transfer status, transfer check value	_ Analysis system	
	 Analysis software, update time 		
	Sample Info	Sample database, Proposal system,	
 Scientific Metadata 	 Exp environment params : voltage、magnetic field、 electric field 	DAQ system, Control system	
	Detector Info: scan, x-ray exposure params		
	• E-log	E-log System	

Metadata acquisition- for cataloging

Message queue

API interfaces

- Acquire metadata from multi-sources **RESTful API** ٠
- High reliability for metadata catalogue Easy for other modules to call • ٠

Metadata ingestor plugins

- flexible development and deployment ٠
- Make up for lack of interfaces

Metadata catalogue

- Catalogue is the core module of data management system, which provides metadata APIs for other applications/modules
- Use MongoDB as the database because of the complicated metadata
- A tool is developed to generate interfaces automatically from metadata models
 - 1. Interface developer design metadata models and create interfaces from web GUI
 - 2. The metadata models and interfaces are parsed and verified
 - 3. The APIs can be called by other system/modules

Data service (1)

- The dedicated computer is designed for user to download data at the facility
- suitable for users to download huge volume of data
- placed at user center/user lounge
- support different storage device interfaces (NAS, disk array, mobile hard disk)

Dedicated computer for data download at HEPS

Data service (2)

Data Web Portal

■ Data search/download, HDF5 file view, data analysis, logbook

数据集:		BeamtimeID:	PI:		PI Email:	ScanID: 获取时间:	请选择日期 to	请选择日期	Q麵 3500
如果数据	居下载出现问题,请联系 下载	管理员获取数据							æ
	数据集	BeamtimeID	样品	PI	PI Email	获取时间	ScanId	Size	操作
	Fe3O4-50nm	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 09:23:31	19	157.73MB	查看数据 下载
	Fe3O4-20nm	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 09:12:23	18	157.73MB	查看数据 下载
	Fe3O4-20nm	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 09:05:01	17	157.73MB	查看数据下载
	Fe3O4-20nm	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 09:02:51	16	157.73MB	查看数据下载
	Cit-Fe	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 08:53:30	15	157.73MB	查看数据下载
	Cit-Fe	GB06-20220718-01		刘敦—	liudy1989@swu.edu.cn	2022-07-20 08:44:20	14	157.73MB	查看数据 下载
	5D-FESO4	GB06-20220718-01		刘敦—	liudy1989@swu.edu.cn	2022-07-20 08:33:47	13	157.73MB	查看数据 下载
	5D-FESO4	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 08:22:41	12	157.73MB	查看数据 下载
	Fe-50nm	GB06-20220718-01		刘敦—	liudy1989@swu.edu.cn	2022-07-20 08:12:14	11	157.73MB	查看数据 下载
	Fe-50nm	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 08:02:31	10	157.73MB	查看数据 下载
	Fə-50nm	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 07:51:33	9	157.73MB	查看数据下载
	2-Fe3O4-50nm	GB06-20220718-01		刘敦一	liudy1989@swu.edu.cn	2022-07-20 07:38:01	8	157.73MB	查看数据 下载

Data service (2)

Data files browser in Data Web Portal

当前位置:/hepsfs/central/4W1B/202303/Data/GB06-20230302-01/raw

根路径返回上一级批量高速下载				
File Manager	文件名 ≑	类型 ◆	大小 🗢	操作
「MoaCAT 「所叠目录	Jzhang-red-1_None.h5	file	142.53 kB	普通下载高速下载
automatically_clean_recycle_folder	S4-1-0.1s-10mu_None_0.h5	file	142.53 kB	普通下载高速下载
202211	S2-1-0.2-20mu-test3_0_0.h5	file	33.91 MB	普通下载高速下载
Data	JZhang-red_None_1.h5	file	78.53 kB	普通下载高速下载
GB06-20230302-01	S2-1-0.2-20mu-test5_0.h5	file	25.56 MB	普通下载高速下载
share	S4-1-0.1s-10mu_None.h5	file	142.53 kB	普通下载高速下载
processed	S2-1-0.2-10mu_0.h5	file	407.81 MB	普通下载 高速下载
- raw GB06-20230308-01	S2-1-0.2-20mu-test2_0_0.h5	file	33.53 MB	普通下载 高速下载
GB06-20230303-01	HS2-1-0.2s-20mu_0.h5	file	721.86 MB	普通下载 高速下载
isolation_area	Jzhang-black_None_0.h5	file	142.53 kB	普通下载高速下载
202302	HS2-1-0.2s-10mu_0.h5	file	3.59 GB	普通下载 高速下载

21

Data service (3)

Data download client in Data Web Portal

- Provide the file download client
- Maximize the utilization of network bandwidth
- Significant improvement in download speed

批里評	\$户端高速下载 批 里普通下 载	客户端安装▼				
	数据集	BeamtimeID	样品	PI	PI Email	操作
	20220720_KIDNEY_66	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	查看数据 客户端高速下载 普通下载
	20220720_KIDNEY_64	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	查看数据 客户端高速下载 普通下载
	20220720_KIDNEY_63	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	查看数据 客户端高速下载 普通下载
	20220720_KIDNEY_61	GB06-20220629-01		张建国	zjgbit@bit.edu.cn	查看数据 客户端高速下载 普通下载

■ Download speed test : 4*4.49GB files

	Bandwidth	Spend	Speed
LAN	1000Mbps	2min52sec	839Mbps
WAN	100Mbps	28min	85Mbps

	Transmissi	ion Speed	File List (4/4)				
	Start time: 2022-08-0	08 13:18:09	End time	: 2022-08-0	08 13:22:07	Total tin	ne: 3m 58s
lo.	Local path	Server pat	h	Size	Progress	Status	Speed/Error
1	D:/whftest/64_0.h5	/hepsfs/central/	·	4.49GB	100.00%	completed	-
2	D:/whftest/66_0.h5	/hepsfs/central/		4.49GB	100.00%	completed	
3	D:/whftest/63_0.h5	/hepsfs/central/	·	4.49GB	100.00%	completed	1 - 1
4	D:/whftest/61_0.h5	/hepsfs/central/	·	4.49GB	100.00%	completed	-

HEPS CC system integration/Test bed/Production

Set up testbed, integrate full data lifecycle software systems to verify the system interfaces, run in the real experimental environment, move to production gradually.

Oct, 2020, BSRF 1W1A

Simple verification of the data management system

- Network bandwidth is 1Gb/s
- Beamline storage: 2TB NAS, Dell EMC NX3240, NFS file system
- Central storage: **80TB** disk array, Lustre file system
- Metadata ingest, catalogue, data transfer, data service

July, 2021, BSRF-3W1 test beamline

- Network bandwidth updated to 10Gb/s
- Beamline storage & Central storage: **80TB** disk array, Lustre file system
- Integrate DAQ system, data management system, analysis software framework, computing cluster

June, 2022, BSRF 4W1B

3

Running in production environment

- Network bandwidth updated to 25Gb/s
- Beamline storage: Huawei Ocean Store 9950
- Central storage: 80TB disk array, Lustre file system
- Follow real experiment process, provide Pymca to do analysing

Data acquisition Analysis framework Interface CT reconstruction Integration test at BSRF

•The data management framework DOMAS is developed and released

- •DOMAS is used to develop data management system at HEPS
- •The data management and data service has been integrated with other sub-systems and verified at beamlines of BSRF
- •Data management and data service are running stably at 4W1B(X-ray fluorescence microanalysis beamline) of BSRF
- •Cooperation with other facilities and community is ongoing
- •We also hope to have chance to cooperate with other Facilities, like PSI/MAXIV/DESY etc.

Thank you for your attention!