Analysis Updates for A₁ⁿ

Mingyu Chen University of Virginia July 09, 2021

Outline:

- 1. Introduction
- 2. Window Dilution Study
- 3. A₁ⁿ Asymmetry Analysis
- 4. Summary and Future work
- 5. Extra Slides: PID Studies

Hall A/C Collaboration Meeting

Longitudinal Virtual Photon Asymmetry A₁

- $Q^2 = 4$ -momentum of virtual photon squared
- v = Energy transfer
- θ = Scattering angle
- $x = \frac{Q^2}{2 M v}$ = Fraction of nucleon momentum carried by the struck quark

$$A_1 = \frac{1}{(E+E')D'} \left[\left(E - E' \cos \theta \right) A_{\parallel} - \frac{E' \sin \theta}{\cos \phi} A_{\perp} \right]$$

$$A_{\parallel} = \frac{\sigma_{\downarrow\uparrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\downarrow\uparrow} + \sigma_{\uparrow\uparrow}}$$

$$A_{\perp} = \frac{\sigma_{\downarrow \rightarrow} - \sigma_{\uparrow \rightarrow}}{\sigma_{\downarrow \rightarrow} + \sigma_{\uparrow \rightarrow}}$$

Hall A/C Collaboration Meeting

 $D' = \frac{(1-\epsilon)(2-y)}{v[1+\epsilon R]}$

 $\frac{\vec{k}}{\vec{s}} \xrightarrow{\vec{k}'} \theta \qquad \phi$

 Angular kinematics for polarized electron scattering

Page:2

07/09/2021

Goals for A₁ⁿ Experiment

- Precisely measure the neutron spin asymmetry A_1^n in the far valence domain (0.61<x<0.77) for the first time.
- Explore the Q^2 dependence of A_1^n with large x value.
- After combining with proton data (CLAS12), extract polarized to unpolarized parton distribution function (PDF) ratios $\Delta u/u$ ($\Delta d/d$) for large x region.
- Give more insights on understanding the spin structure of nucleon.

	$\frac{F_2^n}{F_2^p}$	$\frac{d}{u}$	$\frac{\Delta d}{\Delta u}$	$\frac{\Delta u}{u}$	$\frac{\Delta d}{d}$	A_1^n	A_1^p
DSE-1	0.49	0.28	-0.11	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	-0.07	0.88	-0.33	0.34	0.88
$0^{+}_{[ud]}$	$\frac{1}{4}$	0	0	1	0	1	1
NJL	0.43	0.20	-0.06	0.80	-0.25	0.35	0.77
SU(6)	$\frac{2}{3}$	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{5}{9}$
CQM	$\frac{1}{4}$	0	0	1	$-\frac{1}{3}$	1	1
pQCD	$\frac{3}{7}$	$\frac{1}{5}$	$\frac{1}{5}$	1	1	1	1

Table 1: Predictions for the x = 1 value of various models. From Craig D. Roberts et al 10.1016/j.physletb.2013.09.038

Polarized and sea quark PDFs for $Q^2 = 10 \text{ GeV}^2$ from the NNPDFpol1.1 parameterization

See Nocera ER, et al. Nucl. Phys. B887:276 (2014).

07/09/2021

Hall A/C Collaboration Meeting

Experimental Setup

Electron Beam:

- E_{heam}=2.17 GeV (1-pass commission)
- E_{heam}=10.38 GeV (5-pass DIS production)⁻
- Beam polarization: 85% (<3% uncertainty by Moller Polarimeter)
- Circular beam raster with 2.0-2.5mm radius
- < 50 ppm charge asymmetry (average over ~ 1-2 hr run)

Polarized ³He target:

- ³He production cell (40cm)
- 55–60% polarization without beam
- Reached over 50% polarization with 30 uA beam current

(doubles performance compare to 6 GeV era)

About 3% uncertainty for polarimetry

Spectrometers:

- High Momentum Spectrometer (HMS)
- Super HMS (SHMS)

	Kine		Spec		$ E_l$	5	E_p	$\mid \theta \mid b \theta$		eam time
					Ge	V	GeV	(0)		(hours)
-	$\Delta(1232)$		S	$HMS \mid 2.1$		7	-1.79736	8.5	4.0	
	Elastic		\mathbf{S}	HMS	\$ 2.17		-2.12860	8.5		8.0
Kine	Spec	E_b		E_p	$\theta \mid e^-$		production	e^+ prod.		Tot. Time
		Ge	V	GeV	(\circ)	(\circ) (hour		(hour	\mathbf{s})	(hours)
	DIS									
3	HMS	10.38		2.90 30.		88.0		0.0		88.0
4	HMS	10.3	38	3.50	30.0		511.0	0.0		511.0
В	SHMS	10.3	10.38 3.4		30.0		511.0	4.0		515.0
С	SHMS	10.3	0.38 2.60		30.0	88.0		4.0		92.0

• Aⁿ production run begins on Jan 12th, 2020 and ended on March 13th, 2020.

07/09/2021

Hall A/C Collaboration Meeting

Window Dilution Study

- Using mc-single-arm to generate events for simulation and F1F2IN09 model (from rc-externals) for radiated cross-section to get the simulation for target chamber of the ³He production cell and empty reference cell.
- Perform simulation separately for different target material (N₂ gas between upstream beam-line window and upstream target window; Upstream target window; ³He in target chamber ; Downstream target window), then combine them to obtain the simulation for entire target.
- Get replayed data from hallc_replay with updated optics matrix. After weighted by yield, make comparison with simulation and replayed data.
- Based on simulation and replayed data, determine the window contribution along reconstructed z_{target}.

Propose and Goal of the Study

Propose:

- Provide a guide to determine z_{target} cuts to remove events coming from glass windows while preserve most of events from ³He inside target chamber.
- Estimate window dilution factor for certain production run condition (certain target cell, kinematics, spec) based on simulated results and replayed data.

Goal:

- For certain production run condition (certain target cell, kinematics, spec), the variation of window dilution factor is less than 3%.
- Find a proper z_{target} cuts so that the ΔA_{phys} become minimal.

Determine Yield

(for compare simulation with replayed data)

Replayed data:

- Obtain total charge (BCM1 Coulomb value) for a run from corresponding report file after hallc_replay.
- Then the yield is determined to weight the replayed histograms:

$$Yield = \frac{number of events}{total charge(C)}$$

Simulation:

 $d^2\sigma$

- For simulation, DIS cross-section $dEd \Omega$ for each target material is calculated by Jixie's "CreateXSTree" program using F1F2IN09 model.
- Then the yield is determined to weight the simulation histograms:

$$Yield = rate \frac{1}{beam current (A)} = \frac{d^2 \sigma}{dEd \Omega} E' \frac{\Delta E}{E} \Delta \phi_{tag} \Delta \theta_{tag} \rho_N \frac{target_{length}}{e_{charge} * N_{trials}}$$

Where
$$p_N$$
 is atom number density: $\rho_N = \frac{\rho_m N_A}{M}$

07/09/2021

Hall A/C Collaboration Meeting

Cut used for Comparison

(Simulation vs. replayed data)

HMS cuts:

Acceptance cut:

- Delta cut: (-8%, 8%)
- Theta cut: (-70 mr, 70 mr)
- Phi cut: (-100 mr, 100 mr)

Z_{tar} Cut:

• abs(H.react.z)<30.0 (cm)

Current cut:

• ibcm1>1.0 (uA)

PID cut:

 H.cal.etracknorm>0.8 && H.cal.etracknorm<2.0 && H.cer.npeSum>1

Simulation cut used for comparison between simulation and replayed results :

 istop==0 (remove failed events) Note on replay cuts:

SHMS cuts:

Acceptance cut:

- Delta cut: (-10%, 22%)
- Theta cut: (-55 mr, 55 mr)
- Phi cut: (-50 mr, 50 mr)

z_{tar} cut:

• abs(P.react.z)<30.0 (cm)

Current cut:

• ibcm1>1.0 (uA)

PID cut:

 P.cal.etracknorm>0.8 && P.cal.etracknorm<2.0 && P.ngcer.npeSum>1

Simulation cut used for comparison between simulation and replayed results :

- istop==0 (remove failed events)
- Current cut is used to remove non-physical events during beam trip.
- PID cut provides requirement for good track and remove pion contamination.

07/09/2021

Hall A/C Collaboration Meeting

(Plot of y_{beam} vs. x_{beam})

- SHMS 10602: ³He DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

07/09/2021

Hall A/C Collaboration Meeting

³He Target Simulation (Compare with replayed root file results)

ztg_combined Weighted by Yield

- SHMS 10602: ³He DIS, Transverse 90°
- E_p =-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

delta_combined Weighted by Yield

Hall A/C Collaboration Meeting

Page:10

30

0.3

³He Target Simulation (Compare with replayed root file results)

N2 Upstream

Replay

0.1

Simulation Combine

0.2

0.3

ztg_combined Weighted by Yield

- HMS 3408: ³He DIS, Transverse 90°
- E_p=-3.5 GeV, 30°, kin-4
- Trigger: 3/4 (hTRIG1)

delta_combined Weighted by Yield

phi_combined Weighted by Yield

-0.2

-0.1

0

1000

800

600

400

200

0

Hall A/C Collaboration Meeting

Empty Target Simulation (Compare with replayed root file results)

ztg_combined Weighted by Yield 4500 Down Win 4000 Up Win N2 Upstream 3500 Simulation Combine 3000 Replay 2500 2000 1500**E** 1000**E** 500 20 30 -20 -10 10 theta_combined Weighted by Yield 1400 Down Win Up Win 1200 N2 Upstream 1000 Simulation Combine Replay 800 600 400 4nv 200 0.3

0.1

0.2

0.3

- SHMS 10267: Empty Target DIS, . Transverse 90°
- E_n=-3.4 GeV, 30°, kin-B ٠
- Trigger: 3/4 (hTRIG1) •

phi_combined Weighted by Yield

07/09/2021

-0.2

-0.1

Hall A/C Collaboration Meeting

Empty Target Simulation (Compare with replayed root file results)

- HMS 3077: Empty Target DIS, • Transverse 90°
- E_n=-3.5 GeV, 30°, kin-4 •
- Trigger: 3/4 (hTRIG1) .

delta_combined Weighted by Yield

07/09/2021

-0.2

-0.1

1800**E**

1600

1400

1200

1000

800

600

400

200

800 E

700 E

600 E

500 E

400 E

300 E 200 **F**

100

0

-30

-20

-10

n

0

10

Hall A/C Collaboration Meeting

Page:13

0.2

0.3

Simulation Combined

Replay

0.1

Radiated Cross Section

(Bilinear Interpolation)

- The measured cross section contains effects <u>s</u> due to interactions with materials (ionization, bremsstrahlung) and vertex effects (bremsstrahlung)
- The radiated cross section is:

 $\sigma_{rad} = \sigma_{Born} + \sigma_{RC}$

Dutch upstream win hms kine4

• Use "rc-externals" obtain (p0, theta0, rad_xsec) square grid, then apply billinear interpolation to get rad xsection for give mc simulated event.

07/09/2021

Hall A/C Collaboration Meeting

p0 vs theta0 from mc-single-arm (for glass windows: Cell Dutch)

p0:theta0 {abs(ztq)<30.0&&delta>-10&&delta<22&&xptq>-0.055&&xptq<0.055&&vptq>-0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq<0.05&&vptq

 SHMS kineB (with cuts) p0 range: 3.05 to 4.16 GeV theta0 range: 25.6 to 34.6 deg

p_rate_up=xs_rad_up*p_spec*p_accept*th_accept*ph_accept*dens_ge180*1e-34*beam_curr*1e-6*tar_len_up/100.0/(1.6*1e-19*n_trials);
p_rate_down=xs_rad_down*p_spec*p_accept*th_accept*ph_accept*dens_ge180*1e-34*beam_curr*1e-6*tar_len_down/100.0/(1.6*1e-19*n_trials);

Hall A/C Collaboration Meeting

Window Dilution

From Pol 3He target cell z_{target} histogram weighted by yield:

- $N_{up}(3He)$ = integrated number of simulated events of upstream window within the z cut
- N_{down}(3He)= integrated number of simulated events of downstream window within the z cut
- $N_0(3He)$ =integrated number of replayed events within the z cut

From empty reference cell z_{target} histogram weighted by yield:

- $N_{up}(em)$ = integrated number of simulated events of upstream window within the z cut
- N_{down}(em)= integrated number of simulated events of downstream window within the z cut
- N₀(up, em)=integrated number of replayed events within the z cut for upstream window region
- N_0 (down, em)=integrated number of replayed events within the z cut for downstream window region
- Then define window dilution factor f_{win}:

$$f_{win} = \frac{N_0(up, em) \frac{N_{up}({}^{3}He)}{N_{up}(em)} + N_0(down, em) \frac{N_{down}({}^{3}He)}{N_{down}(em)}}{N_0({}^{3}He)}$$

• Since:

$$A_{phys} = \frac{A_{raw}}{P_b P_t f_{N2} (1 - f_{win})}$$

• We would like to place a proper window z cut to minimize ΔA_{phys} :

$$\Delta A_{phys} \propto \frac{1}{\sqrt{(N_0(^3He))}(1-f_{win})}$$

07/09/2021

Hall A/C Collaboration Meeting

³He Target Simulation

(Compare with replayed root file results) f_{win} =-

• z cut at z=±18.0 cm away from target chamber center position.

Pol 3He run on cell Dutch:

- SHMS 9956: ³He DIS, Longitudinal 180°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

• z cut at z=±12.0 cm away from target chamber center position.

Empty run on reference cell Will:

- SHMS 10267: Empty Target DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

07/09/2021

Hall A/C Collaboration Meeting

Window Dilution (effect of upstream window z cut position)

Pol 3He run on cell Dutch:

- SHMS 9956: ³He DIS, Longitudinal 180°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

Empty run on reference cell Will:

- SHMS 10267: Empty Target DIS, Transverse 90°
- $E_{p}=-3.4 \text{ GeV}, 30^{\circ}, \text{kin-B}$
- Trigger: 3/4 (hTRIG1)

- Fix downstream window z cut at z=+18.0 cm away from target chamber center position.
- Adjust upstream window z cut to minimize

$$\Delta A_{phys} \propto \frac{1}{\sqrt{(N_0(^3He))(1-f_{win})}}$$

- For z cut be (-17 cm,+18 cm), ΔA_{phys} is around minimal.

```
Page:18
```

³He Target Simulation

(Compare with replayed root file results) f_{win} =

• z cut at z=±18.0 cm away from target chamber center position.

Pol 3He run on cell Dutch:

- HMS 2771: ³He DIS, Longitudinal 180°
- E_p=-3.5 GeV, 30°, kin-4
- Trigger: 3/4 (hTRIG1)

ztg_combined Weighted by Yield

• z cut at z=±12.0 cm away from target chamber center position.

Empty run on reference cell Will:

- HMS 3077: Empty Target DIS, Transverse 90°
- E_p=-3.5 GeV, 30°, kin-4
- Trigger: 3/4 (hTRIG1)

07/09/2021

Hall A/C Collaboration Meeting

Window Dilution (effect of upstream window z cut position)

Pol 3He run on cell Dutch:

- HMS 2771: ³He DIS, Longitudinal 180°
- E_n=-3.5 GeV, 30°, kin-4
- Trigger: 3/4 (hTRIG1)

Empty run on reference cell Will:

- HMS 3077: Empty Target DIS, Transverse 90°
- E_n=-3.5 GeV, 30°, kin-4
- Trigger: 3/4 (hTRIG1)

- Fix downstream window z cut at z=+18.0 cm away from target chamber center position.
- Adjust upstream window z cut to minimize

$$\Delta A_{phys} \propto \frac{1}{\sqrt{(N_0(^3He))}(1-f_{win})}$$

• For z cut be (-17 cm,+18 cm), ΔA_{phys} is around minimal.

SHMS APPLIED CUTS

A₁ⁿ Asymmetry Analysis

(results from Melanie Rehfuss)

$$A_{raw} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$
$$A_{raw,CORR} = \frac{N^{+}/(Q^{+}\eta_{LT}^{+}) - N^{-}/(Q^{-}\eta_{LT}^{-})}{N^{+}/(Q^{+}\eta_{LT}^{+}) + N^{-}/(Q^{-}\eta_{LT}^{-})}$$

 N^+, N^- : Beam trip, Acceptance & PID cuts Q^+, Q^- : Beam trip cuts η^+, η^- : Beam trip cuts

```
Acceptance Cuts:
-10 < P.gtr.dp < 22
|P.gtr.ph| < 0.07
|P.gtr.th| < 0.05
|P.react.z| < 17
```

3.4 GeV

Electron Sample/PID cuts: P.ngcer.npeSum > 12 && shower E/P > 0 Total E/P > 0.80 2.6 GeV

Electron Sample/PID cuts: P.ngcer.npeSum > 8 && shower E/P > 0 Total E/P > 0.80

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

Remove low-stat runs

(results from Melanie Rehfuss)

SHMS, | Asymmetries (DIS, 3.4 GeV, 30°)

07/09/2021

Hall A/C Collaboration Meeting

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

(results from Melanie Rehfuss) SHMS, || Asymmetries (DIS, 3.4 GeV, 30°)

07/09/2021

Hall A/C Collaboration Meeting

Page:23

Remove low-stat runs

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

(results from Melanie Rehfuss)

SHMS, || Asymmetries (DIS, 2.6 GeV, 30°)

07/09/2021

Hall A/C Collaboration Meeting

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

(results from Melanie Rehfuss) SHMS, |Asymmetries (DIS, 2.6 GeV, 30°)

07/09/2021

Hall A/C Collaboration Meeting

HMS APPLIED CUTS

A₁ⁿ Asymmetry Analysis

(results from Melanie Rehfuss)

$$A_{raw} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

$$A_{raw,CORR} = \frac{N^{+}/(Q^{+}\eta^{+}_{LT}) - N^{-}/(Q^{-}\eta^{-}_{LT})}{N^{+}/(Q^{+}\eta^{+}_{LT}) + N^{-}/(Q^{-}\eta^{-}_{LT})}$$

$$N^{+}, N^{-}: \text{Beam trip, Acceptance & PID cuts}$$

$$Q^{+}, Q^{-}: \text{Beam trip cuts}$$

$$\eta^{+}, \eta^{-}: \text{Beam trip cuts}$$

$$Acceptance \text{Cuts:}$$

$$-8 < \text{H.gtr.dp} < 8$$

$$|\text{H.gtr.ph}| < 0.06$$

|H.gtr.th| < 0.1 |H.react.z| < 15

3.5 GeV

Electron Sample/PID cuts: H.cer.npeSum > 5.5 && shower E/P > 0 Total E/P > 0.80 2.9 GeV

Electron Sample/PID cuts: H.cer.npeSum > 5 && shower E/P > 0 Total E/P > 0.80

Hall A/C Collaboration Meeting

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

Remove low-stat runs

(results from Melanie Rehfuss)

HMS, |Asymmetries (DIS, 3.5 GeV, 30°)

4uA/10s/10s beam trip cut + preshower E/P > 0.05 PID cut

07/09/2021

Hall A/C Collaboration Meeting

Page:27

 $A_{raw,CORR} = \frac{N^+ / (Q^+ \eta_{LT}^+) - N^- / (Q^- \eta_{LT}^-)}{N^+ / (Q^+ \eta_{LT}^+) + N^- / (Q^- \eta_{LT}^-)}$

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

Aⁿ Asymmetry Analysis

Remove low-stat runs

(results from Melanie Rehfuss) HMS, || Asymmetries (DIS, 3.5 GeV, 30°)

4uA/10s/10s beam trip cut + preshower E/P > 0.05 PID cut

07/09/2021

Hall A/C Collaboration Meeting

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

(results from Melanie Rehfuss) HMS, |Asymmetries (DIS, 2.9 GeV, 30°)

4uA/10s/10s beam trip cut + preshower E/P > 0.05 PID cut

07/09/2021

Hall A/C Collaboration Meeting

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

(results from Melanie Rehfuss)

HMS, || Asymmetries (DIS, 2.9 GeV, 30°)

07/09/2021

Hall A/C Collaboration Meeting

Summary

Analysis Flow Chart

- The A₁ⁿ experiment (E12-06-110) is a flag-ship, high impact experiment which will give more insights on understanding the spin structure of nucleon.
- Timing analysis, detector calibrations, PID cuts complete.
- Window dilution study and offline A₁ⁿ asymmetry analysis ongoing.

Hall A/C Collaboration Meeting

Acknowledgments

People

D. Androic, W. Armstrong, T. Averett, X. Bai, J. Bane, S. Barcus, J. Benesch, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, G. Cates, J-P. Chen, J. Chen, M. Chen, C. Cotton, M-M. Dalton, A. Deur, B. Dhital, B. Duran, S.C. Dusa, I. Fernando, E. Fuchey, B. Gamage, H. Gao, D. Gaskell, T.N. Gautam, N. Gauthier, C.A. Gayoso, O. Hansen, F. Hauenstein, W. Henry, G. Huber, C. Jantzi, S. Jia, K. Jin, M. Jones, S. Joosten, A. Karki, B. Karki, S. Katugampola, S. Kay, C. Keppel, E. King, P. King, W. Korsch, V. Kumar, R. Li, S. Li, W. Li, D. Mack, S. Malace, P. Markowitz, J. Matter, M. McCaughan, Z-E. Meziani, R. Michaels, A. Mkrtchyan, H. Mkrtchyan, C. Morean, V. Nelyubin, G. Niculescu, M. Niculescu, M. Nycz, C. Peng, S. Premathilake, A. Puckett, A. Rathnayake, M. Rehfuss, P. Reimer, G. Riley, Y. Roblin, J. Roche, M. Roy, M. Satnik, B. Sawatzky, S. Seeds, S. Sirca, G. Smith, N. Sparveris, H. Szumila-Vance, A. Tadepalli, V. Tadevosyan, Y. Tian, A. Usman, H. Voskanyan, S. Wood, B. Yale, C. Yero, A. Yoon, J. Zhang, Z. Zhao, X. Zheng, J. Zhou

Institutions

A.I. Alikhanian National Science Laboratory; Argonne National Laboratory; Artem Alikhanian National Laboratory (AANL).; Christopher Newport University; Duke University; Florida International University; Hampton University ; James Madison University ; Jefferson Lab; Kent State University; Mississippi State University; Ohio University; Old Dominion University; Rutgers University; Syracuse University; Temple University; The College of William and Mary; Univ. of Ljubljana; University of Connecticut; University of Kentucky; University of Kentucky; University of New Hampshire; University of Regina; University of Tennessee; University of Virginia; University of Virginia; University of Zagreb

PhD Candidates

Spokespeople

Backup Slides

07/09/2021

Hall A/C Collaboration Meeting

Hall A/C Collaboration Meeting

PID: Noble Gas Cherenkov (NGC) Efficiency & Pion Rejection

Hall A/C Collaboration Meeting

PID: Noble Gas Cherenkov (NGC) Efficiency & Pion Rejection

07/09/2021

Hall A/C Collaboration Meeting

PID: Calorimeter Efficiency & Pion Rejection

07/09/2021

Hall A/C Collaboration Meeting

07/09/2021

Hall A/C Collaboration Meeting

PID: Calorimeter Efficiency & Pion Rejection

07/09/2021

Hall A/C Collaboration Meeting

PID: Calorimeter Efficiency & Pion Rejection Step 2: Determine how many and pass the total E/P cut Pion Contamination with a Preshower Cut HMS Runs: HMS Calorimeter Cut Position vs Efficiency and Pion Supression Step 3: find the percentage of pions 3181-3183 in electron sample 0% 3186-3205 Efficiency 100 •••••• pion contamination = ³He @ 180° E_n= -2.9 GeV, 30° Calorimeter Efficiency = 98.54 PID Cuts: Preshower E/P > 0.0580 Pion RF = 80.16 npeSum > 5 && shower E/P > 0 (e⁻) npeSum < 0.1()300 count Calorimeter 10⁴ N Π 20 total E/P > 0.810 Nominal 0.6 0.8 H.cal.etracknorm Cut Position Acceptance Cuts 10 Add a preshower cut to the PID cut for a PRF boost Used HMS Pre-Shower Cut Position vs Efficiency and Pion Supression Sample Cuts: GC npeSum > 5 && shower $E/P > 0(e^{-})$ Efficiency = 98.25GC npeSum < 0.1 () Pion RF = 121.09 HMS Cal E/P PID Cuts: PC from Calorimeter Only: 120 Histogram is integrated over Total E/P > 0.80[0.80, 1.40] to find percentage 7.50% preshower E/P > 0.05of pions in electron sample (1/PRF) @ 1 npeSum cut from GC study (1/37.26) PC from Calorimeter + GC: 0.20% 0.02 0.04 0.06 80.0 0.1 H.cal.eprtracknorm Cut Position

07/09/2021

Hall A/C Collaboration Meeting

PID SUMMARY

Spec.		Cherenkov Cut Position	Cherenkov Efficiency	PRF	Calorimeter Cut Position	Calorimeter Efficiency	PRF	Combined Pion Cont.
			98.43 0.03%	2591.60 136.75		99.44 0.02%	25.17 0.08	
SHMS	2.6 GeV	# npe's > 2	99.43 0.03%	2907.27 619.73	Total E/P > 0.8	99.32 0.03%	38.85 0.35	0.016%
SHMS	3.4 GeV	# npe's > 2	99.82 0.01%	21.00 0.55 (pushing threshold!)	Total E/P > 0.8	99.33 0.02%	146.39 7.36	0.006%
SHMS	5.6 GeV	# npe's > 2	99.80 0.01%	N/A (above threshold)	Total E/P > 0.8 Pre E/P > 0.05	99.29 0.01%	103.24 4.51	0.012%
SHMS	6.4 GeV	# npe's > 2	99.73 0.01%	N/A (above threshold)	Total E/P > 0.8 Pre E/P > 0.05	99.80 0.01%	28.11 1.13	0.102%
SHMS	7.5 GeV	# npe's > 2	97.08 0.04%	N/A (above threshold)	Total E/P > 0.8	98.54 0.03%	80.16 0.66	0.101%
			97.84 0.04%	33.75 0.99		98.87 0.05%	76.36 1.34	
HMS	2.9 GeV	# npe's > 1			Total E/P > 0.8			0.310%
HMS	3.5 GeV	# npe's > 1	98.85 0.02%	36.27 .20	Total E/P > 0.8	99.11 0.02%	82.88 1.27	0.182%
HMS	4.0 GeV	# npe's > 1			Total E/P > 0.8			0.063%

07/09/2021

Hall A/C Collaboration Meeting

mc-single-arm Simulation Setup

• Number of trails=100 k

HMS Acceptance:

- Delta range: (-15%, 15%)
- Theta range: (-100 mr, 100 mr)
- Phi range: (-100 mr, 100 mr)

SHMS Acceptance:

- Delta range: (-20%, 30%)
- Theta range: (-70 mr, 70 mr)
- Phi range: (-80 mr, 80 mr)

- HMS Simulation Optics File: recon_cosy_refit_1.576_60cm.dat
- SHMS Simulation Optics File:

shms-2017-26cmmonte_q1_1018_q2_1027_q3_1018_ recon_60cm.dat Simulated Pol ³HeTarget: Cell Bigbrother HMS and SHMS:

- Upstream Window: GE180, Z=-21 cm, Length=0.01009 cm
- Downstream Window: GE180, Z=+19 cm, Length=0.01382 cm
- ³He Target Chamber: 12.0 amg, Z=-1.0 cm, Length=40.0 cm
- N₂ gas: 1.0 atm, Z=-25.5 cm, Length=9.0 cm (from Z=-30.0 cm to Z=-21.0 cm)

Simulated Empty Reference Target: cell Will HMS and SHMS:

- Upstream Window: GE180, Z=-20 cm, Length=0.015 cm
- Downstream Window: GE180, Z=+20cm, Length=0.015 cm
- N₂ gas: 1.0 atm, Z=-25.0 cm, Length=10.0cm (from Z=-30.0 cm to Z=-20.0 cm)

Hall A/C Collaboration Meeting

Table of Batch Farm Jobs							Cell	Target	Spec	Kine	status
(for glass windows)							Prod Austin	Up Win; Down Win	HMS	С	To do
	(¹ -					d2n	Prod Austin	Up Win; Down Win	SHMS	Z	To do
Exp	Cell	Target	Spec	Kine	status	d2n	Prod Austin	Up Win; Down Win	HMS	А	To do
A1n	Prod Dutch	Up Win; Down Win	HMS	4	Complete	d2n	Prod Austin	Up Win; Down Win	SHMS	х	To do
A1n	Prod Dutch	Up Win; Down Win	SHMS	В	Complete	d2n	Empty Christen	Up Win; Down Win	HMS	С	To do
A1n	Empty Will	Up Win; Down Win	HMS	4	Complete	d2n	Empty	Up Win; Down Win	SHMS	z	To do
A1n	Empty Will	Up Win; Down Win	SHMS	В	Complete		Christen				
						d2n	Prod Briana	Up Win; Down Win	HMS	С	To do
A1n	Prod Bigbrother	Up Win; Down Win	HMS	4	To do	d2n	Prod Briana	Up Win; Down Win	SHMS	Z	To do
A1n	Prod	Up Win; Down Win	SHMS	В	To do	d2n	Prod Briana	Up Win; Down Win	HMS	А	To do
	Bigbrother					d2n	Prod Briana	Up Win; Down Win	SHMS	х	To do
A1n	Prod Bigbrother	Up Win; Down Win	HMS	3	To do	d2n	Prod Tommy	Up Win; Down Win	HMS	С	To do
A1n	Prod Bigbrother	Up Win; Down Win	SHMS	С	To do	d2n	Prod	Up Win; Down Win	SHMS	z	To do
A1n	Empty Will	Up Win; Down Win	HMS	3	To do	d2n	Prod	Up Win: Down Win	HMS	А	To do
A1n	Empty Will	Up Win; Down Win	SHMS	С	To do		Tommy				
Note:							Prod Tommy	Up Win; Down Win	SHMS	Х	To do
 For glass windows in order to save time: Separate into small scattering angle range (3 angle values each) 						d2n	Empty Fauci	Up Win; Down Win	HMS	A	To do
07/09/2021 Hall A/C Co						d2n	Empty Fauci	Up Win; Down Win	SHMS	Х	To do

Target Cell Window Thickness

	[Cell Dutch] 01/04/202			
Density (amg)	V_tot (cc)	V_pc (cc)	V_tt (cc)	
7.759	441.54	297.15	32.52	
	Production Cell "Dutch	" Wall Thickness		
	Measurement location	Position away from center (along Z) [cm]	Ultrasonic thickness gauge [mm]	Hclog link
	#1	-12.5±0.16	1.323±0.01	https://logbooks.jlab.org/entry/3757788
	#2	-6.25±0.16	1.295±0.01	
	#3	0.0±0.16	1.275±0.01	
	#4	6.25±0.16	1.286±0.01	
TC front	#5	12.5±0.16	1.267±0.01	
	#6	-12.5±0.16	1.341±0.01	
	#7	-6.25±0.16	1.342±0.01	
	#8	0.0±0.16	1.334±0.01	
	#9	6.25±0.16	1.339±0.01	
TC rear	#10	12.5±0.16	1.361±0.01	
Window Thickness	Front window (um)	Back Window (um)	Cold life Time (hr)	Max Polarization no beam (%)
	134.142 ± 0.063	143.475±0.072	29.4 (UVa)	53 (UVa)
	Downstream z=+20 cm	Upstream z=-20 cm		

07/09/2021

Hall A/C Collaboration Meeting

- When calling F1F2IN09 for any nucleus (including hydrogen) the function calls CHRISTY507 and RESMODD. ٠
- The RESMODD function does not work for Q²>11 GeV². For this example, the E' values greater than 3.88GeV • correspond with a Q² value greater than 11 GeV².

07/09/2021

F1F2IN09 Function

Hall A/C Collaboration Meeting

Page:45

5

Δ

12 11.5

11

10.5

Previous Results for A¹ and PDF

Hall A/C Collaboration Meeting

A₁ⁿ Online Projected Results

- From online statistics
- x range covered: (0.40, 0.75)
- Statistical uncertainty expected: $\Delta A_1^n = 0.053 @ x = 0.755$