Pion Form Factor and Factorization to High Q² E12–19–006

Garth Huber

(on behalf of the PionLT Collaboration)

E12–19–006 Important Group Members

Spokespersons: Dave Gaskell, Tanja Horn, GHGraduate Students on the Experiment:

Jacob Murphy Ohio U.

Muhammad Junaid U. Regina

Nathan Heinrich U. Regina

- Run Coordinators (2021):
 - DG, Mark Jones, Simona Malace (2x), Stephen Kay, Douglas Higinbotham, Wenliang Li, Carlos Yero, Holly Szumilla-Vance, Arun Tadepalli, Gabriel Niculescu, Ciprian Gal, Dave Mack, Vladimir Berdnikov
- If interested in joining the team, please contact DG, TH, or GH

Motivations of the Experiment

 $F_(Q^2)$

 $G_{\pi NN}(t)$

- 1) Determine the Pion Form Factor to high Q^2 :
- Indirectly measure F_{π} using the "pion cloud" of the proton $\psi_{\mu\nu\nu}$, via p(e,e' π^+)n $|p\rangle = |p\rangle_0 + |n\pi^+\rangle + ...$
- The pion form factor is a key QCD observable.
- The experiment should obtain high quality F_{π} over a broad Q^2 range. Rated "high impact" by PAC.
- 2) Study the Hard-Soft Factorization Regime:
- Need to determine region of validity of hardexclusive reaction meachanism, as GPDs can only be extracted where factorization applies.
- Separated p(e,e'π⁺)n cross sections vs. Q² at fixed x to investigate reaction mechanism towards 3D imaging studies.
- Perform exclusive π^-/π^+ ratios from ²H, yielding insight to hard–soft factorization at modest Q^2 .

N

The Pion has Particular Importance

Ν

 π

Ν

q

- The pion is responsible for the long-range part of the nuclear force, acting as the basis for meson exchange forces, and playing a critical role as an elementary field in nuclear structure Hamiltonians.
- As the lightest meson, it must be a valence $q\bar{q}$ bound state, but understanding its structure through QCD has been exceptionally challenging.
 - e.g. Constitutent Quark Models that describe a nucleon with m_N =940 MeV as a qqq bound state, are able to describe the ρ -meson under similar assumptions, yielding a constituent quark mass of about $m_N = \frac{m_\rho}{250} = 250 \text{ MeV}$

$$m_Q \approx \frac{m_N}{3} \approx \frac{m_\rho}{2} \approx 350 \text{ MeV}$$

- The pion mass $m_{\pi} \approx 140$ MeV seems "too light".
- We exist because nature has supplied two light quarks and these quarks combine to form the pion, which is unnaturally light and hence very easily produced.

Charged Meson Form Factors

Simple $q\bar{q}$ valence structure of mesons presents the ideal testing ground for our understanding of bound quark systems.

In quantum field theory, the form factor is the overlap integral:

$$F_{\pi}(Q^2) = \int \phi_{\pi}^*(p)\phi_{\pi}(p+q)dp$$

The meson wave function can be separated into φ_{π}^{soft} with only low momentum contributions ($k < k_0$) and a hard tail φ_{π}^{hard} .

While φ_{π}^{hard} can be treated in pQCD, φ_{π}^{soft} cannot.

From a theoretical standpoint, the study of the Q^2 -dependence of the form factor focuses on finding a description for the hard and soft contributions of the meson wave-function.

The Pion in perturbative QCD

At very large Q^2 , pion form factor (F_{π}) can be calculated using pQCD

$$F_{\pi}(Q^2) = \frac{4}{3}\pi\alpha_s \int_0^1 dx dy \frac{2}{3} \frac{1}{xyQ^2} \phi(x)\phi(y)$$

at asymptotically high Q^2 , the pion distribution amplitude becomes

$$\phi_{\pi}(x) \xrightarrow[Q^2 \to \infty]{} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$Q^{2}F_{\pi}(Q^{2}) \underset{Q^{2} \to \infty}{\longrightarrow} 16\pi\alpha_{s}(Q^{2})f_{\pi}^{2}$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

This only relies on asymptotic freedom in QCD, *i.e.* $(\partial \alpha_s / \partial \mu) < 0$ as $\mu \rightarrow \infty$.

 $Q^2 F_{\pi}$ should behave like $\alpha_s(Q^2)$ even for moderately large Q^2 . \rightarrow Pion form factor seems to be best tool for experimental study of nature of the quark-gluon coupling constant renormalization. [A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]

The pion is the "positronium atom" of QCD, its form factor is a test case for most model calculations

• What is the structure of the π^+ at all Q^2 ?

- at what value of Q^2 will the pQCD contributions dominate?
- A difficult question to answer, as both "hard" and "soft" components (such as gluonic effects) must be taken into account.
 - non-perturbative hard components of higher twist strongly cancel soft components, even at modest Q².
 [Braun et al., PRD 61(2000)073004]
 - the situation for nucleon form factors is even more complicated.
- Many model calculations exist, but ultimately...
 - Reliable $F_{\pi}(Q^2)$ data are needed to delineate the role of hard versus soft contributions at intermediate Q^2 .
- A program of study unique to Jefferson Lab (until the completion of the EIC)

Measurement of F_{π} via Electroproduction

Above Q²>0.3 GeV², F_{π} is measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- At small -t, the pion pole process dominates the longitudinal cross section, σ_L
- In Born term model, F_{π}^{2} appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique:

- 1. Isolating σ_L experimentally challenging.
- 2. The F_{π} values are in principle dependent upon the model used, but this dependence is expected to be reduced at sufficiently small -t.

Extraction of form factor from σ_L data \mathcal{T}_{ef} university of Regina

 $p(e,e'\pi^+)n$ data are obtained some distance from the $t=m_{\pi}^2$ pole.

No reliable phenomenological extrapolation possible.

A more reliable approach is to use a model incorporating the π^+ production mechanism and the `spectator' nucleon to extract F_{π} from $\sigma_{\rm L}$.

Our philosophy is to publish our experimentally measured $d\sigma_L/dt$, so that updated values of $F_{\pi}(Q^2)$ can be extracted as better models become available.

E12–19–006 Forward Angle Requirements

This experiment in large part has driven the forward angle requirements of the SHMS+HMS

Test of SHMS at 5.69° in Aug 2018

Requirements for Fall 2021 Run:

Setting	Beam Energy	θ _{shms}	θ _{HMS}	θ _{ΟΡΕΝ}
Q ² =1.60 W=3.08	9.20	6.28°	12.34°	18.62°
Q ² =3.85 W=3.07	8.00	5.50 °	34.15°	39.65°
Q ² =5.00 W=2.95	8.00	6.35°	42.91°	49.26°
Q ² =6.00 W=3.19	9.20	5.50°	46.43°	51.93°
Q ² =8.50 W=2.79	9.20	5.52°	57.70 °	63.22°

- Steve Lassiter has been working on θ_{SHMS} =5.50° requirement
- SHMS+HMS minimum opening angle has also been investigated

 $p(e,e'\pi^+)n$ Event Selection

Coincidence measurement between charged pions in SHMS and electrons in HMS.

Easy to isolate

exclusive channel

- Excellent particle identification
- CW beam minimizes
 "accidental" coincidences
- Missing mass resolution easily excludes 2–pion contributions

Sample data from Kaon–LT experiment E12–09–011 Q^2 =3.0, *W*=3.14, *x*= 0.25, low ε Run: 8045 E_{beam}=8.186 GeV, P_{SHMS}=+6.0530 GeV/c, θ_{SHMS}=6.910° Plots by Vijay Kumar

Extraction of F_{π} requires *t* dependence of $\sigma_{\rm L}$ to be known.

- Only three of Q^2 , W, t, θ_{π} are independent.
- Vary θ_{π} to measure *t* dependence.
- Since non-parallel data needed, LT and TT must also be determined.

The different pion arm (SHMS) settings are combined to yield φ-distributions for each *t*-bin

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$

Extract all four response functions via a simultaneous fit using measured azimuthal angle (ϕ_{π}) and knowledge of photon polarization (ϵ).

- This technique demands good knowledge of the magnetic spectrometer acceptances.
- Control of point-to-point systematic uncertainties crucial due to $1/\Delta \epsilon$ error amplification in σ_L
- Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies,

T. Horn, et al, PRL 97 (2006)192001

Magnetic Spectrometer Calibrations

- Similarly to Fπ-2, we plan to use the over-constrained p(e,e'p) reaction and inelastic e+¹²C in the DIS region to calibrate spectrometer acceptances, momenta, offsets, etc.
 - Fπ-2 beam energy and spectrometer momenta determined to <0.1%.</p>
 - Spectrometer angles <0.5 mr.
 - Fπ-2 agreement with published *p*+*e* elastics cross sections <2%.

Uncertainties from F_{π} Proposal (E12–06–101)

Projected Systematic Uncertainty Source	Pt-Pt ε-random t-random	٤- uncorrelated common to all t-bins	Scale ε-global t-global
Spectrometer Acceptance	0.4%	0.4%	1.0%
Target Thickness		0.2%	0.8%
Beam Charge	-	0.2%	0.5%
HMS+SHMS Tracking	0.1%	0.4%	1.5%
Coincidence Blocking		0.2%	
PID		0.4%	
Pion Decay Correction	0.03%	-	0.5%
Pion Absorption Correction	-	0.1%	1.5%
MC Model Dependence	0.2%	1.0%	0.5%
Radiative Corrections	0.1%	0.4%	2.0%
Kinematic Offsets	0.4%	1.0%	-

- Uncorrelated uncertainties in $\sigma_{\rm UNS}$ are amplified by $1/\Delta\epsilon$ in L/T separation.
- Scale uncertainty propagates directly into separated cross section.

F_{π} Extraction from JLab data

- Model is required to extract F_{π} from σ_L
- •JLab F_π experiments used the VGL Regge model

[Vanderhaeghen, Guidal, Laget, PRC 57 (1998) 1454]

- Propagator replaced by π and ρ Regge trajectories
- Most parameters fixed by photoproduction data
- -2 free parameters: Λ_{π} , Λ_{ρ}
- At small –*t*, σ_L only sensitive to Λ_{π}

$$F_{\pi}(Q^{2}) = \frac{1}{1 + Q^{2} / \Lambda_{\pi}^{2}}$$

New model by R. Perry, A. Kizilersu, A.W. Thomas [PLB 807 (2020) 135581] may allow a second way to extract F_{π} from σ_{L} data

Current and Projected F_{π} **Data**

SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

New overlap points at $Q^2=1.6,2.45$ will be closer to pole to constrain $-t_{min}$ dependence.

New low Q^2 point (data acquired in 2019) will provide comparison of the electroproduction extraction of F_{π} vs. elastic $\pi + e$ data.

The ~10% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

The pion form factor is the clearest test case for studies of QCD's transition from non-perturbative to perturbative regions.

Check of Pion Electroproduction Technique

- Does electroproduction really measure the on-shell formfactor?
- Test by making p(e,e'π⁺)n measurements at same kinematics as π⁺e elastics.
- Can't quite reach the same Q², but electro–production appears consistent with extrapolated elastic data.

Data for new test acquired in Summer 2019:

- small Q² (0.375, 0.425) competitive with DESY Q²=0.35
- -t closer to pole (=0.008 GeV²) vs. DESY 0.013
- A similar test for K⁺ form factor is part of Kaon–LT

Verify that σ_L is dominated by *t*-channel process

- π^+ *t*-channel diagram is purely isovector.
- Measure

$$f_{L} = \frac{\sigma_{L}[n(e, e' \pi^{-})p]}{\sigma_{L}[p(e, e' \pi^{+})n]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

using a deuterium target.

- Isoscalar backgrounds (such as b₁(1235) contributions to the *t*-channel) will dilute the ratio.
- We will do the same tests at Q²=1.60, 3.85, 6.0 GeV².

Universitv

Because one of the many problems encountered by the historical data was isoscalar contamination, this test will increase the confidence in the extraction of $F_{\pi}(Q^2)$ from our σ_L data.

p(*e*,*e*'π⁺)*n* **Q**^{-*n*} Hard–Soft Factorization Test

- QCD counting rules predict the Q⁻ⁿ dependence of p(e,e'π⁺)n cross sections in Hard Scattering Regime:
 - σ_L scales to leading order as Q^{-6} .
 - σ_T scales as Q^{-8} .
 - As Q^2 becomes large: $\sigma_L >> \sigma_T$.

X	Q ² (GeV ²)	W (GeV)	<i>−t_{min}</i> (GeV/c)²
0.31	1.45-3.65	2.02-3.07	0.12
0.39	2.12-6.0	2.05-3.19	0.21
0.55	3.85-8.5	2.02-2.79	0.55

•Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results.

- If σ_L becomes large, it would allow leading twist GPDs to be studied.
- If σ_T remains large, it could allow for transversity GPD studies.

π^{-}/π^{+} Hard–Soft Factorization Test

- Transverse Ratios tend to ¼ as -*t* increases:
 - \rightarrow Is this an indication of Nachtmann's quark charge scaling?
- -t=0.3 GeV² seems too low for this to apply. Might indicate the partial cancellation of soft QCD contributions in the formation of the ratio.

A. Nachtmann, Nucl.Phys.B115 (1976) 61.

 R_{T}

- Another prediction of quark–parton mechanism is the suppression of σ_{TT}/σ_T due to *s*-channel helicity conservation.
- Data qualitatively consistent with this, since σ_{TT} decreases more rapidly than σ_T with increasing Q².

G.M. Huber, et al., PRC 92 (2015) 015202

E12–19–006 Optimized Run Plan

12

Points along vertical lines allow F_{π} values at different distances from pion pole, to check the model properly accounts for:

- π⁺ production mechanism
- spectator nucleon
- off-shell (*t*-dependent) effects.

Points along red curves allow $1/Q^n$ scaling tests at fixed x

For more details, visit Pion-LT RedMine: <u>https://redmine.jlab.org/projects/hall-c/wiki/</u>

Strong Endorsement in many Reviews

Report to PAC18, 12 GeV Session: Measuring F_{π} at Higher Q^2

G.M. Huber, H.P. Blok, D.J. Mack

on behalf of the Exclusive Reactions Working Group

July 6, 2000

 F_{π} Rated "Early High Impact" by PAC35 in 2010

 F_{π} endorsed by NSAC in 2002, as one of the key motivations for the 12 GeV Upgrade.

 F_{π} endorsed again by NSAC in 2015, "as one of the flagship goals of the JLab 12 GeV Upgrade".

PAC47 (2019) Theory Report:

"Since the proposals were originally reviewed, the physics motivations for BOTH studies have only increased."

"A" rating reaffirmed by PAC for BOTH studies.

2021 Run Plan Outline

 Aug 23 – Oct 16: 9.2 GeV (5 pass @ 1.82 GeV/pass)

Oct 20 – Nov 27: 8.0 GeV
(4 pass @ 1.96 GeV/pass)

Q ²	W	Target & SHMS polarity
1.6	3.08	LH+, LD+, LD-
6.0	3.19	LH+
8.5	2.79	LH+

Nov 28 – Dec 11: 9.9 GeV
 (5 pass @ 1.96 GeV/pass)

Q ²	W	Target & SHMS polarity
3.85	3.07	LH+
5.0	2.95	LH+
6.0	3.19	LH+

Q ²	W	Target & SHMS polarity
6.0	2.40	LH+, LD+, LD-
2.45	3.20	LH+
3.85	3.07	LH+, LD+, LD-
5.0	2.95	LH+

 Dec 12 – 14: 6.0 GeV (3 pass @ 1.96 GeV/pass)

Q ²	W	Target & SHMS polarity
3.85	2.02	LH+

Dec 14 – 21: Schedule Contingency

These are primarily the low ε settings

Additional 9 weeks of beam for high ε data scheduled in Fall 2022

A 12 GeV Flagship Experiment

- E12–19–006 is expected to provide the definitive p(e,e'π⁺)n
 L/T–separation data set, and will remain important for decades to come
- F_{π} –1 and F_{π} –2 experiments were very productive, and are among JLab's top cited results (top 4 listed):
 - Volmer et al, PRL 2001 (F_{π} -1) 333 citations
 - Horn et al, PRL 2006 (F_{π} -2) 273 citations
 - Tadevosyan et al, PRC 2007 (F_{π} -1) 224 citations
 - Huber et al, PRC 2007 (F_{π} -2) 217 citations

WE REALLY NEED YOUR ASSISTANCE TO MAKE THE EXPERIMENT A SUCCESS!!

- Fall 2021: 756 person shifts needed @ 2 workers/shift
- We would like co-authors to take shifts in both 2021 and 2022 runs. 2021 requirement: 10 shifts. 2022: ~5 shifts.

Otherwise, please contact DG, TH, GH for alternate arrangements

Shift sign up now open at: <u>https://misportal.jlab.org/mis/apps/physics/shiftSchedule/index.cfm?</u> <u>experimentRunId=HALLC-PIONLT</u>