Update on the Kaon LT Experiment

Vijay Kumar University of Regina

Hall A/C Summer Collaboration Meeting July 8-9, 2021

Outline

- Scientific overview
- Kaon LT experiment and its studies
- Rosenbluth separation overview
- Analysis updates
- Update on the Kaon LT PAC49
- Summary and future perspectives

Dynamics of gluons in QCD

Higgs mechanism is not sufficient !!!

- Dynamical Chiral Symmetry Breaking (DCSB) is expected to provide most of the hadron mass.
- The pion and kaon are very important candidates to utilize in the DCSB study.
 - π the lightest quark system. Responsible for the long range character of the strong interaction.
 - K structure is involved with the strangeness.
 - Both are connected to the Goldstone modes of DCSB.

Kaon LT experiment (E12-09-011)

- Kaon LT experiment is carried out in Hall C at Jefferson Lab over fall 2018 and spring 2019.
 - Exclusive reaction of the experiment.
 - Studies for the separation of cross-sections $(\sigma_L, \sigma_T, \sigma_{LT} \& \sigma_{TT})$.
 - Further studies for the "soft" and "hard" QCD factorization.
 - Attempt to extract the kaon form factor above the resonance region for the first time.

The reaction system of the experiment is,

$$e + p \rightarrow e' + K^+ + \Lambda$$

 $M_{\Lambda} = 1115.68 \ MeV^2/c^2$
 $e + p \rightarrow e' + K^+ + \Sigma^0$
 $M_{\Sigma^0} = 1192.64 \ MeV^2/c^2$

07/08/2021

e(p, e'K⁺) Λ or $\Sigma^{\circ}L/T$ separation studies (search for the K⁺ pole)

The -t dependence studies at constant Q² are important to search the kaon pole.

- The kaon pole is further away from the kinematically allowed region.
- It dominates σ_{L} at smallest -t. This test is very crucial to the kaon form factor and has never been tested before.

Challenges:

- The L/T separation studies require a deep understanding of each detector used in the experiment.
- The kaon PID is very challenging because the pion background is much higher in our data.
- Systematic and statistical uncertainties are also challenges to our analysis.

e(p, e'K⁺) Λ or $\Sigma^{\circ}L/T$ separation studies (QCD factorization)

The Q^2 dependence studies at constant $x_{_B}$ are important to the QCD factorization test.

- Testing the factorization theorem and understand the dynamic effects in Q² and -t kinematics.
- Understand the non-perturbative contributions in the experimentally accessible kinematics.
- One of the predictions, $\sigma_L \sim 1/Q^6$ and $\sigma_T \sim 1/Q^8$ at fixed x_B .
- 6 GeV data analysis had made an effort to the QCD factorization test earlier.
- We have collected data for the scaling studies at $x_{B} = 0.40$ and 0.25.

Kaon LT data collected

The completed data that have been collected in Hall C at Jefferson Lab over fall 2018 and spring 2019 run plans are shown in the table below.

E _b (GeV)	Q ² (GeV ² /c ²)	W (GeV)	X _B	$\epsilon_{High}^{}/\epsilon_{Low}^{}$	Study Type
10.6/8.2	5.5	3.02	0.40	0.53/0.18	scaling
10.6/8.2	4.4	2.74	0.40	0.72/0.48	scaling
10.6/8.2	3.0	3.14	0.25	0.67/0.39	both
10.6/6.2	3.0	2.32	0.40	0.88/0.57	scaling
10.6/6.2	2.115	2.95	0.21	0.79/0.25	both
4.9/3.8	0.5	2.40	0.09	0.70/0.45	FF

The Pion LT experimental data for low Q² have also been collected in Hall C at Jefferson Lab in summer 2019.

E _b (GeV)	Q ² (GeV ² /c ²)	W (GeV)	X _B	3
4.6/3.7/2.8	0.38	2.20	0.087	0.781/0.629/0.286
4.6/3.7/2.8	0.42	2.20	0.097	0.774/0.617/0.264

- We will use this data to compare the direct and indirect methods of extracting the pion form factor.
- The remaining experiment has been scheduled to be run from August to December and fall 2022.

Rosenbluth separation overview (simple version)

- Rosenbluth separation technique is one of the techniques that can be utilized to separate the cross-sections.
 - Measure cross-section for at least two values of ϵ at fixed Q², W and -t.
 - Cross-section at two values of ϵ is then fitted to separate the cross-sections.
- In parallel kinematics, $\theta_{\kappa} = 0$. (θ_{κ} w.r.t \vec{q})
 - Only the σ_{I} and σ_{T} terms contribute.
 - The mathematical form is simple but requires uniform detector acceptance.

Rosenbluth separation overview (full version)

• In non-parallel kinematics, $\theta_{\kappa} \neq 0$.

 Cross-section at two values of ε is simultaneously fitted with a four variable function to determine all of the cross-section terms.

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$

We have collected the Kaon LT data for parallel and non-parallel kinematics settings.

 $E_{h} = 10.6 \text{ GeV}$ $Q^{2} = 3.0 \text{ GeV}^{2}/c^{2}$ W = 3.14 GeV

Vijay Kumar (University of Regina)

The meson wave function (form factor)

K Distribution Amplitude

SOF

k,

- The electromagnetic form factor is an important physical observable connected directly to the internal structure of mesons.
- In quantum field theory, the form factor is the overlap integral,

$$F_K(Q^2) = \int \phi_K^*(p) \phi_K(p+q) dp.$$

- $\Phi_{\kappa}^{\text{soft}}$, (k < k₀) low momentum contributions only. Cannot be treated in pQCD.
- Φ_{κ}^{hard} , hard tail can be treated in pQCD.

HARD (pQCD)

k

• If our data analysis indicates that the K⁺ pole dominates σ_L then we will attempt to extract the kaon form factor.

р

p+q

π and K form factors at low Q² (elastic scattering)

- $F_{\pi}(Q^2)$ and $F_{\kappa}(Q^2)$ are known at low Q^2 , extracted by using π^- and K^- beams on LH_2 target.
 - π^- of 300 GeV, data were collected up to $Q^2 = 0.28 \text{ GeV}^2$.
 - K⁻ of 250 GeV, data were collected up to Q²=0.13 GeV².
- These measurements were used to determined the charge radius of the π and K.
 - The slope of the fitting function at $Q^2 = 0$ provides the radius.
 - $< r^2 > = -(6dF/dQ^2)_{Q^2 = 0}$.
 - π charge radius $< r^2 > 1/2 = 0.657 \pm 0.012$ fm.
 - K charge radius $< r^2 > = 0.340 \pm 0.050 \text{ fm}^2$.

[Amendolia, et al., PL **B178** (1986) 435]

π and K form factors at higher Q²

At higher Q^2 , the direct scattering is not achievable.

- π and K beams of much higher energy which is not possible at the current experimental facilities.
- To access the form factors at higher Q^2 , must employ an alternative method.
 - "Virtual cloud" of the π and K inside the proton makes the measurements possible.
 - This attempt has been made at 6 GeV era and a few other experimental facilities.
- In Born term model, the form factor appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_K^2)} g_{K\Lambda N}^2(t) F_K^2(Q^2,t)$$

Indirect determination of the form factor is model dependent.

Analysis update (RFTime & missing mass branches)

A new branch of the RFTime variable has been added to hcana.

- In some settings the RFTime variable is useful for PID.
- New variable of the RFTime is calculated as,
- RFTime = mod((BunchSpacing)(P_RF_tdcTime-P_hod_fpHitsTime+RF_Offset)).
- **RF_Offset** is just to recentre the resulting distribution.

New missing mass variables have also been added to hcana.
Stephen Kay (UofR), details of this work can be found at, DocDB <u>1129-v2</u>

Analysis update (SHMS HGC efficiency & geometrical cut)

Finalizing the HGC efficiency is challenging.

- The collection of Cherenkov lights in the HGC is not uniform.
- There is an inefficient region in the middle of the detector.
- Decided to cut off the very inefficient region.
- We are working to have position-dependent bin-by-bin HGC efficiency for regions outside the hole cut.

Analysis update (PID in SHMS)

Analysis update (kaon PID)

- The preliminary kaon PID is shown in the kaon missing mass plot.
 - The kaon sample looks clean but we need to optimize the kaon PID cuts.

$$E_b = 6.19 \ GeV, Q^2 = 3.0 \ GeV^2/c^2 \ W = 2.32 \ GeV, P_{SHMS} = 3.48 \ GeV/c$$

Analysis update (verifying the online SHMS Hodoscope calibration)

The online Hodoscope calibration has been verified. Both the calibrations (online & offline) are almost equivalent.

Nathan Heinrich (UofR)

Analysis update (scaler luminosity yields)

The preliminary scaler luminosity study has been completed.

Richard Trotta (CUA)

Analysis update (analysis flow chart)

The data analysis of the Kaon LT experiment is an iterative process.

Update on the KaonLT PAC49

- Overall ~60% of our approved data were acquired in fall 2018 and spring 2019 run plans.
 - Q^2 scan at $x_B = 0.40$.
 - And $F_{\kappa}(Q^2)$ points.
- The statistics at the higher beam energies are systematically lower except for one of the settings.
 - This increases the originally projected uncertainties and makes difficult to extract the science for the Q^2 scan at $x_B = 0.25$.
- A KaonLT PAC49 jeopardy document has been submitted, requesting a total of 18 days beam time.
 - Q^2 scan at $x_B = 0.25$.
 - And $F_{\kappa}(Q^2)$ points.

Spokespersons:

• T. Horn, G. Huber and P. Markowitz

- The Kaon LT experiment is for the high precision L/T/LT/TT separation studies. The data analysis is intricate and the international journal publications are expected to be published in 2-3 years.
- I will start the p(e, e'K⁺)∧ L/T/LT/TT separation cross-sections studies at Q² = 0.5 GeV²/c² after completing the ongoing studies.
- I will also start the p(e, e' π^+)n L/T/LT/TT separation cross-sections studies at Q² = 0.5 GeV²/c² from the Kaon LT experiment and at Q² = 0.38 and 0.42 GeV²/c² from the Pion LT experiment.
- Other studies such as simulations (SIMC) will also be carried out with the physics analysis.
- The other students are also preparing to start the main physics analysis at higher Q^2 .

SAPIN-2021-00026

Thank You!

