The Generalized Polarizabilities of the Proton

Temple University Ruonan Li

On behalf of JLAB E12-15-001 Collaboration

JOINT HALL A & C SUMMER COLLABORATION MEETING 07/08/2021

- Theoretical background
- VCS Experiment E12-15-001
- Analysis Progress
 - Elastic Data
 - Pion Preliminary Analysis
 - VCS Preliminary Analysis
- Summary

Content

Polarizabilities

Polarizability:

- •A fundamental characteristic of the proton
- Characterizes the nucleon dynamical response to an external electromagnetic field

Generalized Polarizabilites (GPs):

• Access by Virtual Compton Scattering (VCS)

Scattered proton

Scattered real photon

- Two scaler and four vector GPs
- Fourier transform can map out the spatial distribution density of the polarization induced by an EM field

Scaler GP at the four-momentum transferred squared $Q^2=0$ (RCS limit)

Generalized Polarizabilities

• Electric polarizability α_E reflects the **rigidity** of proton

Magnetic Polarizability

$$\overrightarrow{m} = \beta_M \overline{B}$$

- •**Paramagnetic**: >0, quarks align along magnetic field;
- •**Diamagnetic**: <0, pion cloud induced magnetic field in opposite direction
- Partially cancels each other, makes β_M value small

Reaction & Amplitudes

k-incoming electron *q*-virtual photon *p*-initial proton k'-scattered electron *q'*-real photon *p'*-final proton

Kinematics of $ep \rightarrow ep\gamma$ reaction

VCS cross-section =
$$d^5\sigma/(dk'_{lab}d\Omega'_{elab}d\Omega_{p_{cm}})$$

VCS process \rightarrow photon electro-production reaction

LEX & DR Formalism

•LEX - Low Energy Expansion

Below pion threshold

Below & Above pion threshold

World Data & Motivation

• Initial theoretical models predicted smooth fall off of α_E

- data at $Q^2 = 0.33$ implies non-trivial structure
- New experiment can:
 - Address puzzling α_E enhancement
 - Reduce error by 2

J. Roche, et al., Phys. Rev. Lett. 85 (2000) 708-711; P. Janssens, et al., Eur. Phys. J. A37 (2008) 1-8; G. Laveissiere, et al., Phys. Rev. Lett. 93 (2004) 122001; H. Fonvieille, et al., Phys. Rev. C86 (2012) 015210; P. Bourgeois, et al., Phys. Rev. Lett. 97 (2006) 212001; Eur. Phys. J.A55 (2019) no. 10, 182; Phy. Rev. Lett. 123 (2019) no. 19, 192302; Phys. Rev. C 103, 025205 (2021) * Figure Credit: Hamza Atac

- Small values, $1/3 \sim 1/4$ of α_E
- Large uncertainties
- New experiment can:
 - Improve precision
 - Explore para-& dia-magnetic mechanism inside nucleon

JOINT HALL A & C SUMMER COLLABORATION MEETING 07/08/2021

JLab E12-15-001 Experiment

Predicted Measurement

Sensitivity to
$$\alpha_E$$

Sensitivity to
$$\beta_M$$

- • ϵ increase to 0.98
- Doubles the sensitivity to the GPs

Elastic

VCS peak and pi0 peak

MM²

$$mm2 > 0.01$$

 $abs(W-1.232) < 0.01$
 $abs(Q2-0.33) < 0.05$
 $abs(\theta_{pq} - \theta_{center}) < 3$
 $abs(\phi_{pq} - \phi_{center}) < 70$

Figure Credit: Hamza Atac

Kin1b OLD HCANA

Events above zero

Elastic data has the same problem

Figure Credit: Mark Jones

Kin1b NEW HCANA

1

17

VCS Preliminary Analysis

W h_W_low Scounts Scounts Couឆ្លាts Entries 31800 data Mean 1.227 -VCS SIMC Std Dev 0.04908 PION SIMC 4000 5000 3000 4000 3000 2000 2000 1000 1000 <u>......</u> ^{1.35} ^{1.4} W(GeV) 1.15 0.2 0.25 1.05 1.2 1.25 1.3 Ŏ.15 1.1 $heta_{\gamma\gamma^*}$ h_thegg_low Cogunts Counties Entries 31768 Mean 141.4 Std Dev 14.91 5000 8000 7000 4000 6000 L 5000 3000 4000 2000 3000 2000 E 1000 1000 **Europering and an analysis of the second seco** ¹⁷⁰ θ_{γγ}· 100 50

VCS Preliminary Analysis

- GPs are fundamental structure constants
- Data at $Q^2 = 0.33$ implies non-trivial structure
- JLab E12-15-001 experiment focus on exploring the mechanism of the non-trivial Q2dependence of α_F
- Analysis status
 - **Detector calibration and timing cuts completed** \bullet
 - **Elastic** *H*(*e*, *e'*)*p* **data cross section comparison at same HMS central momentum completed**
 - Determination spectrometer central angle and momentum offsets completed(revisit)
 - π^0 production cross section extraction preliminary results
 - Determination of VCS cross section and extraction of α_E and β_M ongoing

Zulkaida Akbar, Hamza Atac, Vladimir Berdnikov, Deepak Bhetuwal, Debaditya Biswas, <u>Marie Boer</u>, Alexandre Camsonne, Jian-Ping Chen, Eric Christy, Arthur Conover, Markus Diefenthaler, Burcu Duran, Dipangkar Dutta, Rolf Ent, <u>Dave Gaskell</u>, Carlos Ayerbe Gayoso, Ole Hansen, Florian Hauenstein, Nathan Heinrich, William Henry, Tanja Horn, Joshua Hoskins, Garth Huber, Shuo Jia, Mark Jones, Sylvester Joosten, Abishek Karki, Stephen Kay, Vijay Kumar, Ruonan Li, Xiaqing Li, Wenliang Li, Anusha Habarakada Liyanage, <u>Dave Mack</u>, <u>Simona Malace</u>, Pete Markowitz, Mike McCaughan, Hamlet Mkrtchyan, Casey Morean, Mireille Muhoza, Amrendra Narayan, Michael Paolone, Melanie Rehfuss, Brad Sawatzky, Andrew Smith, Greg Smith, Nikolaos Sparveris, Richard Trotta, Carlos Yero, Xiaochao Zheng, Jingyi Zhou

Spokespersons

Run Coordinators

People

Post-docs

Graduate student

Thank You & Question Time

Temple University Ruonan Li

On behalf of JLAB E12-15-001 Collaboration

JOINT HALL A & C SUMMER COLLABORATION MEETING 07/08/2021

Backup Slides

Temple University Ruonan Li

On behalf of JLAB E12-15-001 Collaboration

JOINT HALL A & C SUMMER COLLABORATION MEETING 07/08/2021

Spectrometer: Same momentum, Different HMS theta

	SHMS_p	SHMS_th	HMS_p	HMS_th
Kin1a	4.034	7.69	0.893	37.33
Kin1b	4.034	7.69	0.893	51.40

Energy Calibration

	SHMS_p	SHMS_th	HMS_p	HMS_th
Kin2a	4.034	7.69	0.863	33.52
Kin2b	4.034	7.69	0.863	55.22

Energy Calibration

missing_mass²

JOINT HALL A & C SUMMER COLLABORATION MEETING 07/08/2021

27