Calcium Radius EXperiment (CREX)

Analysis Update

Devi L. Adhikari – July 8, 2021

adhidevi@jlab.org Idaho State University

(On behalf of CREX Collaboration)

Outline

- Introduction
- The experiment
- Recent analysis updates
- Summary

- Different DFT models are not in close agreement with each other
- · CREX provides exp. data point crosschecking these theories

Parity-Violating Electron Scattering (PVeS)

- Elastic scattering of longitudinally polarized electrons from unpolarized (isotopically pure) targets
- Asymmetry of the detected rates between the beam's opposite helicity states

CREX Overview

- CREX ran in Hall A from Dec 2019 to Sep 2020
- ~4 months interruption due to pandemic
- Beam energy $\rightarrow \sim 2.181 \text{ GeV}$
- Beam current $_{\rightarrow}$ \sim 150 uA
- Scattering angle $_{\rightarrow}$ $\sim 5^{o}$
- Q-square \rightarrow 0.031 (GeV/c)²
- Rate \rightarrow ~ 28 MHz per arm

Integration Technique

- Very high rates
 - practically impossible to count individual electrons
 - DAQ dead-time prevents the individual electron counting
- Integrate detector signal over a helicity window defined by 120 Hz flipping
- Fast helicity reversal cancels noise from:
 - target density fluctuations
 - → beam current fluctuations
- Pattern combination cancels 60 Hz noise associated with electronics power

Pseudo-random helicity patterns

$$Asym = \frac{\sum_{i=1}^{2} R_i - \sum_{i=1}^{2} L_i}{\sum_{i=1}^{2} R_i + \sum_{i=1}^{2} L_i}$$

Hall A Beamline

Polarimetry Moller

Moller polarimetry:

- Low current, invasive measurement
- Moller scattering of beam electrons from a magnetized Fe foil

 $A_{moller} = \langle A_{ZZ} \rangle P_t P_b$

• 3-4 T field gives saturated magnetization perp. to the foil

• Consistent results throughout the run

Polarimetry Compton

Compton Polarimetry:

CREX Analysis Update

HRSs and Acceptance Collimators

Devi L. Adhikari

CREX Analysis Update

Experimental Components – Focal Plane Detectors

Quartz dimension: 16 cm \times 3.5 cm \times 0.5 cm

- Integrating detectors use rad-hard, Spectrosil 2000 fused-silica
- Downstream quartz always connected in counting mode for efficient alignment check
- Non-linearity of detector response was tested on the bench and with beam during the experiment
- GEMs, used during PREX-2 could handle orders of magnitude higher rates (~MHz/cm²) than VDCs (10 kHz/cm²)

Beam Fluctuation Correction

- Beam jitter noise can be several times greater than counting statistics
- One of the major sources of systematic error
- Detector asymmetry (A_{det}) needs proper correction for beam fluctuations

$$A_{cor} = A_{det} - A_q - \underbrace{\left(\sum_i \alpha_i \Delta M_i + \alpha_E A_E\right)}_{(A_{fabe})}$$

- Beam intensity asymmetry (A_q) controlled using A_q feedback system
- Multiple techniques to calibrated correction slopes (α_i):
 - → Linear (multivariate) regression \rightarrow uses natural beam motion
 - * Beam modulation \rightarrow uses artificial/driven beam motion
 - → Lagrange multiplier \rightarrow hybrid of regression and beam modulation

Q^2 Measurements

- $Q^2 = 2 E E'(1 \cos \theta)$
- E, E' = Energy before, after scattering
- θ = Scattering angle

• Similar Q² values for both HRSs

- · Measurements were performed periodically
- · Consistent measurement throughout the runs

Summary

- · CREX successfully completed data taking
- · Asymmetry and beam correction analysis is near complete
- Polarimetry measurement is near complete
- Inelastic background analysis is close to complete
- Planning to unblind in the Fall DNP meeting
- Publication will be out in a few months after unblinding

Backup

PVeS – Now a Precision Tool

- E122 1st PVeS exp. (late 70's) at SLAC
- JLab program launched in 90's
- E158 measured PV in Møller scattering at SLAC (2007)
- Significant improvement in experimental components over time:
 - → photocathodes
 - ➔ polarimetry
 - → cryotargets
 - → beam stability to nanometer level
 - → low noise electronics
 - → radiation-hard detectors

Summary of PVeS Experiments

Experimental Components – Detector Alignment

Measurement at a Single Q^2

