Generalized GDH Sum Rules for Neutron and ³He at Low Q²

Chao Peng (Argonne National Laboratory)

For E97-110 and Hall A Collaborations

HALL A/C COLLABORATION MEETING, JUNE 08, 2021

Outline

Introduction

Experiment E97-110

E97-110 Results

Generalized GDH Sum Rules

Virtual Compton amplitudes are related to moments of spin dependent structure functions
Connect moments of spin-dependent structure functions with the Compton amplitudes

$$I_{TT}(Q^2) = \frac{M^2}{4\pi^2 \alpha} \int_{\nu_{th}}^{\infty} \frac{K\sigma_{TT}(\nu, Q^2)}{\nu^2} d\nu$$
$$= \frac{2M^2}{Q^2} \int_{0}^{x_{th}} \left[g_1(x, Q^2) - \frac{4M^2 x^2}{Q^2} g_2(x, Q^2) \right] dx$$

 g_1 and g_2 are experimentally accessible, $I_{TT}(Q^2)$ predictions are given by theories

- Chiral Effective Field Theory (ChEFT)
- Lattice QCD (not available yet)

Generalized Spin Polarizabilities

Longitudinal-Transverse (LT) interference polarizability

$$\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_{th}} [g_1(x,Q^2) + g_2(x,Q^2)] x^2 dx$$

- Quantifies the spin precession from LT interference (analogous in classical view)
- Arises because of virtual photon $(Q^2 \neq 0)$ can be longitudinally polarized
- "Gold-plated" observable for ChEFT because of suppression in $\Delta(1232)$ contributions

Forward spin polarizability

$$\gamma_0(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_{th}} \left[g_1(x, Q^2) - \frac{4M^2}{Q^2} x^2 g_2(x, Q^2) \right] x^2 dx$$

Outline

Introduction

Experiment E97-110

E97-110 Results

E97-110 at Jefferson Lab

Inclusive measurement, ${}^{3} \stackrel{\rightarrow}{\text{He}} (\stackrel{\rightarrow}{e}, e')X$ • Scattering angles: 6° and 9°

- Polarized electron beam, P_{beam} = 75%
- Polarized ³He target, P_{target} = 40%

Measured the differences of polarized cross sections

- Parallel (anti-parallel)
- Perpendicular

Spokespersons: J.-P. Chen, A. Deur, F. Garibaldi Graduate students: J. Singh, V. Sulkosky, J. Yuan, C. Peng, N. Ton

E97-110 at Jefferson Lab

Target Cell	Angle	Beam Energy (MeV
Penelope	6.10°	2134.2
Priapus	6.10°	2134.9
Priapus	6.10°	2844.8
Priapus	6.10°	4208.8
Priapus	9.03°	1147.3
Priapus	9.03°	2233.9
Priapus	9.03°	3318.8
Priapus	9.03°	3775.4
Priapus	9.03°	4404.2

Radiative Correction

Iterative correction

- Build pseudo-model with experimental data
- Interpolation and extrapolation (or filled by other models) for unmeasured points
- Calculate radiative effects with this pseudo-model
- Unfold Born cross sections, and then update the pseudo-model
- Repeat until results are converged

Radiative Correction

Peter-bosted model for unmeasured extrapolation

Radiative Correction

Radiative Correction

Systematic uncertainties

- Internal effects by comparing different approaches < 3%
- Extrapolation or model dependency for the unmeasured region
 - $\circ~$ Cross-check with each other < 3%
- Free parameter Δ for singular integral of I(E, E', l)
 - $\circ~\Delta=1\pm0.5$ MeV tested, negligible
- Material thickness uncertainty
- Particle trajectory uncertainty
 - $\,\circ\,\,$ Varied the central angle by $\pm 0.1 ^{\circ}$

Outline

Introduction

Experiment E97-110

E97-110 Results

Interpolation to constant Q²

 $Q^2 = 0.032 \sim 0.23 \text{ GeV}^2$

Blue: 9 degree Red: 6 degree Black points: interpolated data points

³He Results

³He Spin-dependent Structure functions QE subtracted

V. Sulkosky et al., Phys. Lett. B 805 (2020) 135428

Neutron Results

Nuclear corrections follow the recipe from C. Ciofi degli Atti and S. Scopetta (1997)

V. Sulkosky et al., Phys. Lett. B 805 (2020) 135428

Neutron Results

V. Sulkosky et al., Phys. Lett. B 805 (2020) 135428

Neutron Spin Polarizabilities

V. Sulkosky et al., Nature Physics volume 17, p687–692 (2021)

Summary

Generalized GDH integrals are extracted at low Q²

- Neutron GDH shows reasonable agreement with ChEFT calculations
- ³He GDH integral exhibits a turning point to recover real photon point

Spin polarizabilities for neutron

- Surprising disagreement with ChEFT calculations at lowest Q²
- Motivates lattice QCD calculations