How we learned to stop worrying and love tritium

Nathaly Santiesteban

On behalf of the E12-11-112 collaboration

Hall A/C Summer Collaboration Meeting July 8, 2021

E12-11-112 workforce

Leiqaa Kurbani

University of New Hampshire

³H/³He motivation

³He and ³H mirror nuclei:

 3 He (protons) \leftrightarrow 3 H(neutrons)

- ✦ Few-body nuclei
- ✦ Benchmark data
- cancellation of experimental systematics, nuclear effects

³H/³He motivation

³He and ³H mirror nuclei:

³He (protons) \iff ³H(neutrons)

- ✦ Few-body nuclei
- ✦ Benchmark data
- cancellation of experimental systematics, nuclear effects

- Sum of Short-range correlations: 3He/3H (2pn + pp)/(2pn + nn) (x>1)
 Ratio of pp to pn pairs assuming isospin symmetry
- + Access G_M^n : Effective neutron target (x=1)
- Charge radius of 3H vs 3He (x=3)

Hall A configuration

Kinematics coverage

P. Solvignon, J.Arrington, D.B.Day, D. Higinbotham, Z. Ye (Spokepeople)

X>1 Physics Analysis

Short Range Correlations

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

Previous Experiments

<u>Precision Measurement of the Isospin Dependence in the 2N</u> <u>Short Range Correlation Region</u>

Check the 2N SRC isospin dependence at 1<x<2, and also 3N momentum sharing configuration.

np pair dominates:

$$\frac{\sigma_{3H}}{\sigma_{3He}} \approx \frac{2\sigma_{np}}{2\sigma_{np}} = 1$$
 where

 no isospin preference:
 $\frac{\sigma_{3H}}{\sigma_{3He}} = \frac{2\sigma_{np} + \sigma_{nn}}{2\sigma_{np} + \sigma_{pp}} \xrightarrow{0.74$
 0.74
 $\sigma_{p} \approx 2.43\sigma_{n}$
 $\sigma_{p} \approx 2.43\sigma_{n}$
 $\sigma_{p} \approx 2.43\sigma_{n}$

Preliminary Cross-Sections (x>1)

³H/³He Cross Section Ratio

$$^{3}H/^{3}He$$
 Interpretation

Ē.

$$\frac{\sigma_{3H}}{\sigma_{3He}} = \frac{N_{np}\sigma_{np} + N_{nn}\sigma_{nn}}{N_{np}\sigma_{np} + N_{pp}\sigma_{pp}}$$

$$\Rightarrow \text{ where:} \qquad \sigma_{np} = \sigma_n + \sigma_p$$

$$\Rightarrow \text{ Off-shell} \qquad \Rightarrow \text{ Experimental} \\ \text{deForest cross} \qquad & \text{Cross section} \\ \text{section:} \qquad & \text{ratio:} \\ \sigma_p/\sigma_n \approx 2.43 \qquad & \frac{\sigma_{3H}}{\sigma_{3He}} = 0.85 \\ \Rightarrow \text{ Assuming } N_{nn}(^3H) = N_{pp}(^3He)$$

$$\frac{{}^{3}H/{}^{3}He \text{ Interpretation}}{\left[\begin{array}{c} \sigma_{2H} \\ \sigma_{2H} \\$$

$^{3}H/^{3}He$ Interpretation

Phys. Rev. Lett. 124, 212501 (2020) I. Korover et al., Phys. Rev. Lett.113, 022501 (2014)

2.1 enhancement from simple np pair counting

The isospin structure of short-range correlations in the mirror nuclei ³H and ³He

S. Li,^{1,2} R. Cruz-Torres,^{3,2} N. Santiesteban,^{1,3} D. Abrams,⁴ S. Alsalmi,⁵ D. Androic,⁶ K. Aniol,⁷ J. Arrington,^{2,8} T. Averett,⁹ C. Ayerbe Gayoso,⁹ J. Bane,¹⁰ S. Barcus,⁹ J. Barrow,¹⁰ A. Beck,³ V. Bellini,¹¹ H. Bhatt,¹² D. Bhetuwal,¹² D. Biswas,¹³ D. Bulumulla,¹⁴ A. Camsonne,¹⁵ J. Castellanos,¹⁶ J. Chen,⁹ J-P. Chen,¹⁵ D. Chrisman,¹⁷ M. E. Christy,¹³ C. Clarke,¹⁸ S. Covrig,¹⁵ K. Craycraft,¹⁰ D. Day,⁴ D. Dutta,¹² E. Fuchey,¹⁹ C. Gal,⁴ F. Garibaldi,²⁰ T. N. Gautam,¹³ T. Gogami,²¹ J. Gomez,¹⁵ P. Guéye,^{13,17} A. Habarakada,¹³ T. Hague,⁵ O. Hansen,¹⁵ F. Hauenstein,¹⁴ W. Henry,²² D. W. Higinbotham,¹⁵ R. J. Holt,⁸ C. Hyde,¹⁴ K. Itabashi,²¹ M. Kaneta,²¹ A. Karki,¹² A. T. Katramatou,⁵ C. E. Keppel,¹⁵ M. Khachatryan,¹⁴ V. Khachatryan,¹⁸ P. M. King,²³ I. Korover,²⁴ L. Kurbany,¹ T. Kutz,¹⁸ N. Lashley-Colthirst,¹³ W. B. Li,⁹ H. Liu,²⁵ N. Liyanage,⁴ E. Long,¹ J. Mammei,²⁶ P. Markowitz,¹⁶ R. E. McClellan,¹⁵ F. Meddi,²⁰ D. Meekins,¹⁵ S. Mey-Tal Beck,³ R. Michaels,¹⁵ M. Mihovilovič,^{27, 28, 29} A. Moyer,³⁰ S. Nagao,²¹ V. Nelyubin,⁴ D. Nguyen,⁴ M. Nycz,⁵ M. Olson,³¹ L. Ou,³ V. Owen,⁹ C. Palatchi,⁴ B. Pandey,¹³ A. Papadopoulou,³ S. Park,¹⁸ S. Paul,⁹ T. Petkovic,⁶ R. Pomatsalyuk,³² S. Premathilake,⁴ V. Punjabi,³³ R. D. Ransome,³⁴ P. E. Reimer,⁸ J. Reinhold,¹⁶ S. Riordan,⁸ J. Roche,²³ V. M. Rodriguez,³⁵ A. Schmidt,³ B. Schmookler,³ E. P. Segarra,³ A. Shahinyan,³⁶ K. Slifer,¹ P. Solvignon,¹ S. Širca,^{27,28} T. Su,⁵ R. Suleiman,¹⁵ H. Szumila-Vance,¹⁵ L. Tang,¹⁵ Y. Tian,³⁷ W. Tireman,³⁸ F. Tortorici,¹¹ Y. Toyama,²¹ K. Uehara,²¹ G. Urciuoli,²⁰ D. Votaw,¹⁷ J. Williamson,³⁹ B. Wojtsekhowski,¹⁵ S. Wood,¹⁵ Z. H. Ye,⁸,^{*} J. Zhang,⁴ and X. Zheng⁴ (Thomas Jefferson National Accelerator Facility Hall A Tritium Collaboration)

Currently under review by PRL

Future Work

- Additional data at low Q2
- Additional data at x>2
- Theoretical calculations are underway Noemi Rocco (Fermilab) Alessandro Lovato (Argonne Lab) Misak Sargsian (FIU)

Expectations 1+ Publication of the theoretical interpretation. 1 arXiv paper with extracted cross sections

X=1 Physics Analysis

Accessing to neutrons

Neutron measurements include:	Lightest nuclei are used for neutron measurementsImage: Object of the second symplectic definition of the second symplectic	
${}^{3}\overrightarrow{He}(\overrightarrow{e},e')$ QE polarization experiments		$\frac{{}^{2}H(e,e'p)}{{}^{2}H(e,e'n)}$ QE ratio

$${}^{2}\overrightarrow{H}(\overrightarrow{e},e')$$
 QE
Vector-polarized deuterium

$${}^{2}H(e, e') - p(e, e')$$

 ${}^{2}H(e, e'p), {}^{2}H(e, e'n)$

Accessing to neutrons

If measuring neutrons (no charge):

- Energy information from time of flight
- Requires precise measurement of neutron detection efficiencies

Measurement Corrections:

- Reaction mechanisms FSI and MEC
- Nuclear structure

Neutron cross section

$$\left(\frac{d\sigma}{d\Omega}\right)_n = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{1+\tau} \left((G_E^n(Q^2))^2 + \frac{\tau}{\varepsilon} (G_M^n(Q^2))^2 \right)$$

How well do we know the magnetic form factor?

<u>Current Status of</u> G_M^n

CLAS Collaboration. Phys.Rev.Lett. 102 (2009)

<u>Current Status of</u> G_M^n

E12-11-112 Goal

Measure the neutron magnetic form factor using the ${}^{3}H/{}^{3}He$ cross-section ratios

Preliminary Cross Sections

Theory calculations courtesy of N. Rocco (Fermilab) and A. Lovatto (Argonne Lab)

 G_M^n extraction without medium corrections

$$\sigma_{3H} \sim 2\sigma_n + \sigma_p \qquad \sigma_{3He} \sim \sigma_n + 2\sigma_p$$

$$R = \frac{\sigma_{3H}}{\sigma_{3He}} \sim \frac{2\sigma_n + \sigma_p}{\sigma_n + 2\sigma_p}$$

$$\sigma_n \sim \frac{1 - 2R}{R - 2} \sigma_p$$

$$(G_M^n)^2 \sim \frac{\epsilon}{\tau} \left[\frac{1 - 2R}{R - 2} \sigma_p \frac{1 + \tau}{\sigma_{mott}} - (G_E^n)^2 \right]$$

 G_M^n extraction without medium corrections

Current Work

Finalize the final version of this plot after medium corrections.

1 form factor publication

1 arXiv paper with extracted cross sections

<u>Uncertainties</u>

 $1 \le x \le 2$

Cross-Section

Normalization (%) Point-to-Point (%) Normalization (%) Point-to-Point (%) Sources Beam Energy 0.5 - 1 —--—-—-0.2 Scattering Angle 0.6 _--—--1-3 Momentum —--—--0.2 0.1 Tracking Efficiency _--—--Acceptance 0.1-1.5 —--_--_--Efficiencies/Trigger/ 0.01-0.1 Livetime —-—----³He contamination <0.3 <0.3 **Radiative Corrections** 0.4-0.4 1 _--_--Endcap Contamination 0.07 0.1-0.3 0.1 0.1-0.3 Charge 0.5 0.1 _--_--Boiling 0.3, 0.4 0.2 _--_--—-Target Thickness 0.3-1 1.04 —-Hydrogen Contamination** 0.2 0.2 —-___

Total ~ 1.15

Ratios

X=3 Physics Analysis

Elastic Scattering

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp.} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{F_{ch}^2 + \tau F_M^2}{1 + \tau} + 2\tau F_M^2 tan^2(\frac{\theta}{2})\right]_{.}$$

Elastic Scattering

The charge form factor can be described by :

$$F(q^2) = \int e^{\frac{iq \cdot x}{\hbar}} \rho(x) d^3x \xrightarrow{x \to r} 4\pi \int \rho(r) \frac{\sin\left(|q|r/\hbar\right)}{|q|r/\hbar} r^2 dr$$

Extracting the charge radius in the limit $q^2 \rightarrow 0$: $\langle r^2 \rangle \equiv -6 \hbar^2 \frac{dF(q^2)}{dq^2} \Big|_{q^2=0}$

$$\left\langle r^2 \right\rangle \equiv -6 \,\hbar^2 \frac{dF(q^2)}{dq^2} \bigg|_{q^2=0}$$

Goal: Extract the ³H charge radius Current experimental results: large uncertainties, discrepancies

	< <i>r</i> ² _{rms} > _{3H}	<r²<sub>rms>_{3He}</r²<sub>	
GFMC	1.77(1)	1.97(1)	
χ EFT	1.756(6)	1.962(4)	
SACLAY	1.76(9)	1.96(3) —>	$\Delta \mathbf{R}_{\mathbf{RMS}} = \mathbf{0.20(10)}$
BATES	1.68(3)	1.97(3) →	$\Delta \mathbf{R}_{\mathrm{RMS}} = \mathbf{0.29(04)}$
Atomic		1.959(4)	

Extracting the ³H Charge Radius

 $Q^2 = 0.11 \, GeV^2$

 $\sigma(^{3}\text{He})$ will be compared with world data.

3H/3He ratio will be used to normalize $\sigma(^{3}H)$ with smaller normalization uncertainty (expected ~1.5%)

Perform a Global fit to the world ³H data after including the $Q^2 = 0.11 \text{ GeV}^2$ point and extrapolate to $q^2 \rightarrow 0$.

Data vs SIMC

38

Data vs SIMC

Status and Future Work

- Data is calibrated and Yields were extracted successfully.
- Simulation and Data comparisons are being optimized.
- Systematic uncertainties are under review.

Next...

- Cross section ratios extraction
- Global fit analysis

Expectations: 1 ³H charge radius Publication

<u>Summary</u>

1 Submitted publication

1 + Publication of the theoretical interpretation + x>2 data.
1 arXiv paper with extracted cross sections

1 Form factor publication

1 arXiv paper with extracted cross sections

Thank you!

Special thanks to: Shujie Li, Leiqaa Kurbani, John Arrington, Douglas Higginbotham, Elena Long, Karl Slifer, Zhihong Ye E12-11-112 collaboration Tritium collaboration Target group Hall A staff and collaborators

