F2 Analysis in Hall C

Joint Halls A/C Summer Meeting 2021

Precision measurements of the F_2 structure function at large x in the resonance region and beyond

Jefferson Lab

Experiment Overview

Hall C Spectrometers

- Hall C Commissioning experiment
- Electrons
 detected in both
 SHMS and HMS
- Ran with E12-10-008 (EMC ratios in lighter nuclei)

See Abishek's talk next!

Joint Halls A/C Summer Meeting 2021

Cross Section Extraction: Data Yields

 $Y_{data}^{corrected} = \frac{Y_{data}^{Raw} * Prescale * (1 - \pi_{contamination}^{0})}{\epsilon_{cer} * \epsilon_{tracking} * \epsilon_{boiling} * LT}$

SHMS PID cuts: • E/p > 0.7 (etottracknorm) Npe > 2.0 (ngcer.npeSum)

Joint Halls A/C Summer Meeting 2021

See Hall C Winter 2021 talk for details

SHMS Acceptance cuts:

- -10 < delta < 22
- <u>|ytar</u>| < 10 cm
- <u>|xptar|</u> < 100 mr
- |vptar| < 100 mr

Cross Section Extraction: Monte Carlos Ratio Method

- MC simulation: mc_single_arm \bullet
- model: f1f221 (M.E. Christy) ullet
- radiative corrections: rc_externals ullet
- After cross section weighting the ulletMC is scaled by MC_{ScaleFact}

$$MC_{ScaleFact} = \frac{L_{Data}}{L_{MC}}$$
$$L_{Data} = \frac{N_A * L_{tgt} * \rho_{tgt} * Q}{M_{tgt} * e}$$

$$L_{MC} = \frac{\Delta E \Delta \Omega}{\Delta E \Delta \Omega}$$

Joint Halls A/C Summer Meeting 2020

Update on F2 from Hall C

Cross Section Extraction: Monte Carlos Ratio Method

- MC simulation: mc_single_arm ullet
- model: f1f221 (M.E. Christy) ullet
- radiative corrections: rc_externals ullet
- After cross section weighting the \bullet MC is scaled by MC_{ScaleFact}

T

$$MC_{ScaleFact} = \frac{L_{Data}}{L_{MC}}$$
$$L_{Data} = \frac{N_A * L_{tgt} * \rho_{tgt} * Q}{M_{tgt} * e}$$
$$L_{MC} = \frac{N_{gen}}{\Delta E \Delta \Omega}$$

Joint Halls A/C Summer Meeting 2020

Update on F2 from Hall C

Cross Section Extraction: Monte Carlos Ratio Method

1)Weight MC with radiative cross section, add CSB, bin in delta

2) Take ratio of data to MC

Joint Halls A/C Summer Meeting 2021

3) Multiply each bin by born cross section

Cross Sections for SHMS 21 degree settings

- Colors represent different momentum settings
- Percent level differences between settings in overlap regions and the shape across delta seen in each setting suggest further study of the acceptance is required
- Acceptance mostly cancels in D/H ratio
- Note: Calorimeter efficiency not yet included in cross sections

Joint Halls A/C Summer Meeting 2021

Cross Sections HMS vs SHMS @ 21degrees

- Data was taken in both the SHMS and HMS at 21 degrees to provide a cross check
- Excellent agreement in the D/H resonance region suggests momentum and spectrometer angles are well understood
- HMS optics above x=0.68 (E' > 5 GeV) needs to be revisited
- A slight shape across delta in the HMS was corrected for and has been a feature since the 6 GeV era (next slide)

- reconstructed quantities compared to MC
- Similar δ dependence has been found in SHMS data that can be fixed in a similar method
- This δ dependence is visible only for individual cross sections and cancels out for d/p ratios

NO δ Correction

Joint Halls A/C Summer Meeting 2021

HMS δ correction

• DATA/MC vs δ plot irrespective of all kinematics and targets shows a systematic variation in data

• This is an known issue for the HMS form 6 GeV era and can be corrected by remapping the δ bins

F2 Analysis in Hall C

After δ Correction

New SHMS Noble Gas Cerenkov Efficiency

- and Y_{Cer}.
- uniformly across delta.
- New efficiency is now parameterized as a function of delta.

Joint Halls A/C Summer Meeting 2021

• Previous analysis used a look up table to determine the noble gas Cherenkov Efficiency as a function of X_{Cer}

• Recently, by looking at the efficiciency corrected efficiency, it was discovered that the old method didn't work

98.11 / 93	
0.3385	
± 0.0001772	
806 ± 0.2162	
675 ± 0.0415	
± 0.0006158	
3 ± 0.0008212	
± 5.338e-05	
± 2.328e-05	

Error Analysis: Target Density

Joint Halls A/C Summer Meeting 2021

Error	Value	Uncertainty	$\frac{\delta \rho t}{\rho t}$
Temperature	19 K	$\pm 182mK$	0.27%
Pressure	25 psia	$\pm 2psia$	0.02%
Equation of State			0.1%
Length Measurement Precision	100 mm	$\pm 0.26mm$	0.26%
Length (Inner or Outer?)	100 mm	$\pm 0.26mm$	0.26%
Target Contraction	99.6%	$\pm 0.1\%$	0.1%
Beam Position	0	$\pm 3mm$	0.2%
Avg Boiling Correction LH2(LD2)			0.30% (0.3
Total LH2 (LD2)			0.60% (0.6
35 40 45 50 55 60 DCD14D G ((, 1)			

BCM4B Current (uA)

C12 HMS Boiling

The overall normalization uncertainty used is slightly Jarger that 2026 le above; 0.75% in cross sections and 1.1% in D/H ratio.

• Global error reflects our lack of knowledge to the target ^bboiling, temperature, density, length and beam position. 0.94 slope (%/100uA)_1 nn3 •^{0.}Andditional point to point uncertainity is calculated by taking the average current **BCM4B Current (uA)**

- Item required for 1st publication D/H ratio
 - Comparisons between 6 GeV and SLAC data
- Items required for highest Q2 setting in (HMS @ 60 degress)
 - Charge Symmetric Background
 - Pion contamintion
- Items required for precision absolute cross sections
 - Revisit Calorimeter efficiency
 - Overlaps in SHMS cross sections
 - SHMS delta correction
 - HMS optics for momentums > 5 GeV
 - Incorporate latest updates to analyzer (hcana)
- Exciting physics to follow! (See Aruni's talk)

Looking Ahead

Experiment Spokespeople	<u>Gradı</u>
Eric Christy	Deb E
Thia Keppel	Aruni
Simona Malace (contact)	Abel S
Ioana Niculescu	Abish
Gabriel Niculescu	Case
Dave Gaskell (EMC)	

- uate Students
- Biswas
- Nadeeshani
- Sun
- lek Karki (EMC)
- y Morean (EMC)

Post Doc **Bill Henry**

<u>Special Thanks to</u> Mark Jones Carlos Yero Greg Smith

Back Up Slides

Joint Halls A/C Summer Meeting 2020

Update on F2 from Hall C

Cross Sections for SHMS 25 degree settings

Joint Halls A/C Summer Meeting 2021

Cross Sections for SHMS 29 degree settings

Joint Halls A/C Summer Meeting 2021

Cross Sections for SHMS 33 degree settings

Joint Halls A/C Summer Meeting 2021

Cross Sections for SHMS 39 degree settings

Joint Halls A/C Summer Meeting 2021

Error Analysis: Kinematic Uncertainties

Joint Halls A/C Summer Meeting 2021

Error Analysis: Acceptance

shms : d : fractional change in cross-section vs Bjorken X : 39°

Joint Halls A/C Summer Meeting 2021

