Cross section extraction from H(e,e') and D(e,e')

E12-10-002 Experiment HallC Jlab

Aruni Nadeeshani

Hampton University Advisor - Dr. Eric Christy

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

Outline

- Physics motivation
 - Constrain PDFs
 - Quark hadron duality
 - Non singlet moments
 - Resonance /DIS modelling
- Results
 - p,d cross sections ->Bill
 - d/p ratio
- Summary

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

Physics motivation- open questions @high x

- What is F_2^n/f_2^p and d/u for large x?
- How is the deuteron made from proton and neutrons?

-EMC effects in deuteron?

-Isospin dependent off-shell effects in light nuclei?

- JLab 12 GeV experimental data should provide answers
- Hall C F₂ experiment(E-10-002): Took data to extract F₂ⁿ and f₂^p in a wide x range (Hall C,2018)
- MARATHON: Took data on ³H and ³He to extract F₂ⁿ/f₂^p (Hall A ,2018)

 BONuS12: Took data to extract F2^{n /} f2^p in a large x and Q² (HallB, 2020)

MARATHON+E12-10-002

Physics motivation- constrain PDFs

 Structure of proton and neutron have been studied through deep inelastic scattering experiments. At leading order,

$$F_{2}^{p} = x[\frac{4}{9}u(x) + \frac{1}{9}d(x)]$$

$$F_{2}^{n} = x[\frac{4}{9}d(x) + \frac{1}{9}u(x)]$$
At large x, (x \rightarrow 1) $\frac{F_{2}^{n}}{F_{2}^{p}} = \frac{1 + 4\frac{d}{u}}{4 + \frac{d}{u}}$

$$\sum_{n=1}^{10^{3}} \frac{10^{n}}{10^{2}}$$

• We measured both p and d cross $\overset{{}_{\scriptstyle \Box}}{}$ sections

03

Aruni Nadeeshani

- CTEQ-JLab (CJ) performs global QCD fits of PDFs from data including deepinelastic lepton-nucleon scattering, proton-proton collisions ...etc
- Data were taken at large x as well as small x- constraint the nuclear corrections and the d quark at the same time To improve uncertainty in d/u

extraction specially at large X

Physics motivation-Quark hadron Duality

- Structure function in resonance region on average behave like structure functions in DIS regime.
- It's a fundamental property of Nucleon structure. Observed in : $F_2^p, F_L^p, F_1^p, F_2^n, F_2^d \dots$ etc
- There is arbitrariness in defining the local W intervals; typically try to catch peaks and valleys within one interval.
- Sensitive to higher twist operators
- To understand Quark hadron duality we need large Q² range.

Physics motivation:Non singlet moments

-Test LQCD calculations by comparing non-singlet moments from LQCD to those extracted from data.

-Study structure function moments (proton-neutron moments can be directly compared to lattice)

 $M_2^{NS} \approx M_2^P - M_2^N \approx 2M_2^P - M_2^{P+N}$

By I.Albayrak, V.mamyan, M.E.Christy et al. Ref:https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.123.022501

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

Physics Motivation: DIS modelling/Resonance

- Provides constraints to larger Q² up to 16 GeV2 for both proton and deuteron fit
- Provides a complete data set (proton) and deuteron) for a precise neutron extraction
- A physics driven global fit to inclusive cross sections is very valuable-Moments of structure functions and duality, physics of nucleon resonances/non-resonance ...

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

Proton fit

07/08/2021

$0.1 \le Q^2 < 0.5$ $0.5 \le Q^2 < 1$ $\leq Q^2 < 2$ $3 \leq Q^2 < 4$ $4 \le Q^2 < 6$

Results of d/p ratios

- The d/p ratio plots for 25, 29, 33 and 39 deg in SHMS

D/H ratios is being drafted with submission planned before this Fall.

D and H cross sections are being finalized.

Bill's talk

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

- Comparison between F2 experiment D/H cross section ratio with QCD fits and MARATHON experiment.
- Good agreement between SHMS and HMS data at 21 deg.

- Most of the uncertainty canceled in the cross section ratio.
- But for absolute cross sections these are still unknown.
- SHMS acceptance is much more sensitive to understand the forward transport of the spectrometer.(field integrals of HB and Q1,Q2 and Q3)
- With the field integral change by 0.3% the d/h ratio does not change. But absolute cross section shows δ dependance.

 $d/h_{1.00}$

Aruni Nadeeshani

SHMS d cross section

SHMS d/h cross section

δ

Hall A&C collaboration meeting- Summer 2021

Summary

- resonance and large x regime.
- It will add to our understanding of Quark-Hadron duality, provide a benchmark for LQCD, and improve DIS and resonance region fits.
- Data analysis is mostly finalized for d/p (per nucleon) results.
- A PRL publication with d/p ratios is being drafted with submission planned before Fall 2021
- The results from E12-10-002 experiment will enrich physics at the large-X Bjorken region.

Aruni Nadeeshani

• The F2 experiment will provide essential data to constrain PDF fits (CJ) in the

Back up slides

E12-10-002 : inclusive electron-nucleon scattering experiment in Hall C

- Ran in the spring 2018 in parallel with EMC
- Targets LH2, LD2, Al

E = Beam energy, E' = recoil energy of electron

 $\nu = E - E' = virtual photon energy$

Aruni Nadeeshani

SHMS Detector System 71% data were taken by SHMS, rest with HMS(not in picture)

- HMS pushed the data to higher Q² up to 16 GeV²
- HMS 21 deg : to cross calibrate with SHMS data

X Bjorken:
$$X = \frac{Q^2}{2M\nu}$$

$$Q^2 = 4EE'Sin^2\frac{\theta}{2} \qquad \qquad W^2 = M^2 + 2M\nu - Q^2$$

Hall A&C collaboration meeting- Summer 2021

Cross-Section Extraction Method

- The method used to extract the cross-section : Monte-Carlo Ratio Method \bullet
- For each bin in $(\Delta E', \Delta \Omega)$, number of total electrons detected by the spectrometer

$$N^{e-} = L \times \left(\frac{d\sigma}{d\Omega dE'}\right) \times \left(\Delta E' \Delta \Omega\right) \times \epsilon_{tot} \times A(E', \theta) + BG \qquad .$$

where, L = Integrated Luminosity = $N_{beam}^{e-} \times \frac{N_{target}}{Area}$

 ϵ_{tot} = Total Efficiency

 $A(E', \theta)$ = Acceptance for the bin

BG = Background

• Hence the efficiency corrected yield is defines as -

$$Y = \frac{N^{e^-} - BG}{\epsilon_{tot}} = L \times \sigma \times (\Delta E' \Delta \Omega) \times A(E', \theta) \qquad \dots (2)$$

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

..(1)

Cross-Section Extraction Method

 (Y_{MC})

$$Y_{data} = L \times \sigma^{data} \times (\Delta E' \Delta \Omega) \times A(E', \theta) \qquad \dots (3)$$

$$Y_{MC} = L \times \sigma^{MC} \times (\Delta E' \Delta \Omega) \times A_{MC}(E', \theta) \qquad \dots (4)$$

• Taking ratio of equation (3) and (4)

$$\frac{Y_{data}}{Y_{MC}} = \frac{L \times \sigma^{data} \times (\Delta E' \Delta \Omega) \times A(E', \theta)}{L \times \sigma^{MC} \times (\Delta E' \Delta \Omega) \times A_{MC}(E', \theta)} \qquad \dots (5)$$

• Considering $A(E', \theta) = A_{MC}(E', \theta)$ and Monte-Carlo generated with same luminosity with data-

$$\sigma^{data} = \sigma^{MC} \times \frac{Y_{data}}{Y_{MC}} \qquad \dots (6)$$

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

Efficiency corrected yield can be measured from the experiment (Y_{data}) and also from the Monte-Carlo

Cross-Section Extraction Method

Aruni Nadeeshani

Hall A&C collaboration meeting- Summer 2021

Bill showed in detail in the last talk

For the Monte-Carlo events (≥ 1 *million*) of scattered electrons are generated uniformly in $(E', X' \equiv \frac{dY}{dZ}, Y' \equiv \frac{dY}{dZ})$ space using the program mc-

Born approximation is just the first order approximation in α of electron-nucleon scattering by one photon exchange. To mimic the reality we multiply the each events of MC by $\frac{\sigma_{rad}^{model}}{\sigma_{born}^{model}}$ where, $\sigma_{born}^{model} =$ model Born cross-section, σ_{Rad}^{model} = total radiative model cross-section

The Monte-Carlo yield need to be calculated with the same luminosity as data. Physics weighted, (uniformly) generated Monte-Carlo events are multiplied with a factor to get the Y_{MC} :

 $Y_{MC}(E',\theta) = N^{e-} \times scale \ factor$

scale factor is defined as the ratio of data and MC luminosity:

scale factor = $\frac{L_{data}}{L_{MC}} \times \epsilon_{tot} \times \frac{E_{LT} \times C_{LT}}{PS}$, where

beam charge $L_{data} = target \ density \times target \ length \times Avogadro's \ number \times$ atomic mass