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National Virtual Biotechnology Lab (NVBL)

e National Virtual Biotechnology Lab (NVBL)
o https://science.osti.gov/nvbl

e Aid U.S. policymakers in responding to the
COVID-19 pandemic with epidemiological
information for decision making

e Accelerate production of critical medical
supplies across the nation

e Supercomputing and artificial intelligence
for design of targeted therapeutics

e Leverage chemical testing & analysis to
facilitate new antigen and antibody testing

NVBL given US Secretary of Energy Honour
BROOKHFPMEN  Award (202 1)
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Overview

e Drug Discovery & Design is a complex, expensive
o 0O(10) years; O(10% $; O(10°%) candidates

e Scale-Accuracy trade-off:
o Al-driven HPC methods 1000 x effective
performance of traditional HPC simulations

e Al-driven HPC methods will be formulated as
heterogeneous and adaptive workflows:
o Systems software evolve in response

Computational Molecules most likely
cost to be of interest

Ref. Aspuru-Guzik
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Figure 1: The computational campaign to advance COVID-
19 therapeutics has two coupled loops: drug candidates go
through four stages in the Hit-to-Lead loop; a small set of
drugs are selected for the Lead Optimization loop. The following
methods and protocols are implemented as distinct workflows
(WF): Ensemble Docking (WF1), ML-driven Enhanced Sam-
pling (WF2), both coarse-grained (CG) and fine-grained (FG)
ESMACS (WF3), and TIES (WF4).
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Campaign: Hit-to-Lead Loop

Multi-stage campaign employed to
select promising drug candidates:

e WF1: High-throughput ensemble
docking to identify small molecules
(“hits”)

e WF2: Al-driven Molecular Dynamics
for modeling specific binding regions
and understanding mechanistic
changes involving drugs

e WF3: Binding Free Energy
calculations of promising leads
(“Hit-to-Lead”)

https://arxiv.org/abs/2010.06574
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Campaign: Lead Optimization

Multi-stage campaign employed to
select promising drug candidates:

Ensemble | ESMACS
Docking CG
T Hit Ifgol_pead I -
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Surrogate Sampling Leads Selected
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Fa ¥

e WF4: TIES -- Alchemical Binding Free
Energy calculations of promising leads
(Lead Optimization)
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ML-driven Ensemble (WF2): 10-100x Protein Folding

Combining AI with HPC: Al-driven MD simulations -- DeepDriveMD

Coordinates, contact maps, other features
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Characterizing RP on Leadership Platforms

ID HPC #Tasks #Generations Task #Cores/ #GPUs/ #Cores/Pilot #GPUs/Pilot
Platform Runtime Task Task
1 Titan 2":n=[5—12 1 - 2":n =[10 — 17 -
2 Titan 914 [ : o o (53] 828s+14s 32 gn {1,1 16%
3 Summit 3098; 12,276 1 600s — 900s 1-—42 0;6 : .
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Computational Challenges: Heterogeneity

e Heterogeneity of different types and at multiple levels
o Coupled Al-HPC (WF2)
o High-throughput function calls (WF1)
o Ensembles of MPI tasks (WF3/4)

e Spatio-temporal variation within and across WF1

HPC Platform Facility Batch  Node Architecture Workflows Max # nodes

System CPU GPU utilized
Summit OLCF LSF 2 X POWERO9 (22 cores) 6 x Tesla V100 WF1-4 2000
Lassen LLNL LSF 2 X POWERD9 (22 cores) 4 x Tesla V100 WF2,3 128
Frontera TACC Slurm 2 X x86_64 (28 cores) — WF1 7650
Theta ALCF Cobalt 1 xx86_64 (64 cores) — WF1 256
SuperMUC-NG LRZ Slurm 2 X x86_64 (24 cores) — WF3-4 6000 (with failures)
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Ensemble Docking:
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e Docking: OpenEye; Library (ORD): 6.25M ligands (drug candidate); 32 targets/receptors
Fluctuations in docking execution time library (ORD) for different receptors

@)
@)

O
(@)

Long-tailed Tx for different ligands for a given target (receptor)

Many work items (function calls) need to be distributed

Call duration varies two order of magnitudes (1-100s). Mean duration 8s.
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Ensemble Docking: (WF1)

(=)

e
'S

docking rate [M docks/hr]
N
docking rate [M docks/hr]
=]
N

»

o
o
o

0 2000 4000 6000 0 25000 50000 75000 100000
time [sec] time [sec]
(a) (b)

e Docking: OpenEye; Library (ORD): 6.25M ligands (drug candidate); 32 targets/receptors
o Fluctuations in docking execution time library (ORD) for different receptors
o Long-tailed Tx for different ligands for a given target (receptor)

o Many work items (function calls) need to be distributed

o . Call duration varies two order of magnitudes (1-100s). Mean duration 8s.
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Ensemble Docking (WF1) with RAPTOR
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ID Platform Application Nodes Pilots Taslés Startup Utilization  Task Time [sec] Rate [x10°/h]
[x10°] [sec] avg/ steady max mean max mean
1 Frontera OpenEye 128 31 205 129 90% / 93% 3582.6 28.8 17.4 5.0
2  Frontera OpenEye 7600 1 126 81 90% / 98%  14958.8 10.1  144.0 126.0
3  Frontera OpenEye 8336 1 13 451 63% / 98% 219.0 25.3 91.8 11.0
St ZtoDock 1060 T 57 H07F——95%1-95% 2639362 13 Tt




RADICAL-Pilot (RP) with RAPTOR : Performance
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1 Frontera OpenEye 128 3] 205 129 90% / 93% 3582.6 28.8 17.4 5.0

2  Frontera OpenEye 7600 1 126 81 90% / 98%  14958.8 10.1  144.0 126.0

3  Frontera OpenEye 8336 1 13 451 63% / 98% 219.0 25.3 91.8 11.0
— St ZtoDock 1060 T 57 H07F——95%1-95% 2639362 13 Tt

NATIONAL LABORATORY



Impacting SARS-CoV-2 Medical Therapeutics %)
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e Scale of Operation:

1 . . Fig. 4. Conformational changes upon MCULE-
« ~10 DOCk|ng calculations 5948770040 binding to MP™ indicate changes within
~ 3 _ H H distinct regions, both close-to and farther-away from
* 1 O ML drlven MD Ca|CU|at|0nS the primary binding site. (a) RMS fluctuations of the
) I 1 - 3 DIO v T * 0
[ )

~5 x 10* Binding Free Energy Calculations
~2.5 x 10° node-hours (~30 days, all
Summit)

 Peak Performance
« ~ 8000 nodes (Frontera, April. 2021)
e ~ 4000 nodes on Summit

» Extensible Computational Infrastructure and
Capabilities
* Beyond COVID-19 ?

... under review PNAS
SROOKHAUEN



Scale of Operation:

~10" Docking calculations

~10° ML-driven MD calculations

~5 x 10* Binding Free Energy Calculations
~2.5 x 10° node-hours (~30 days, all
Summit)

Peak Performance
« ~ 8000 nodes (Frontera, April. 2021)
e ~ 4000 nodes on Summit

Extensible Computational Infrastructure and
Capabilities
* Beyond COVID-19 ?

... under review PNAS
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Summary

e ML enhances the effective performance
o ML “improve” performance of simulations
o “.... Simulations are mere generators of
data for powerful ML models”! g
e Exascale computing on petascale platforms! | “’

VRIS,

o Developed 1%t gen of AI-HPC infrastructure
> Sophistication of A-HPC methods will grow S5l AT
e Rethink systems software ecosystem N
o Collective perf. of heterogeneous ST )
workflows; not just single tasks
o Advances in adaptive runtime systems for
such workflows 17
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Thank you!
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