#### **Scalable HPC & AI Infrastructure for COVID19 Therapeutics**

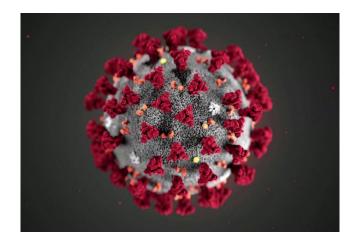
Shantenu Jha

# Computation and Data-Driven Discovery, Brookhaven National Laboratory RADICAL Lab, Rutgers University

Advancing Medical Care through Discovery in the Physical Sciences

https://indico.jlab.org/event/447/

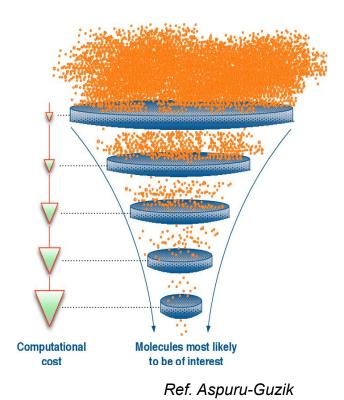






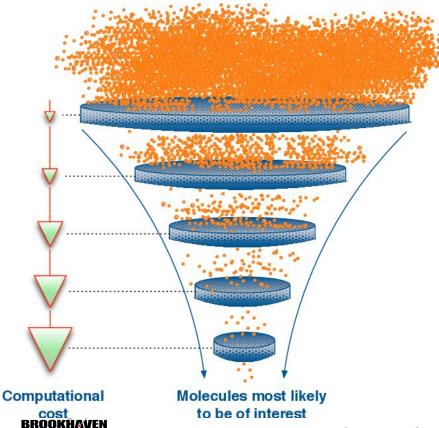

#### National Virtual Biotechnology Lab (NVBL)

- National Virtual Biotechnology Lab (NVBL)
  - <u>https://science.osti.gov/nvbl</u>
- Aid U.S. policymakers in responding to the COVID-19 pandemic with epidemiological information for decision making
- Accelerate production of critical medical supplies across the nation
- Supercomputing and artificial intelligence for design of targeted therapeutics
- Leverage chemical testing & analysis to facilitate new antigen and antibody testing


NVBL given US Secretary of Energy Honour Award (2021)






#### **Overview**

- Drug Discovery & Design is a complex, expensive
  O(10) years; O(10<sup>9</sup>) \$; O(10<sup>68</sup>) candidates
- Scale-Accuracy trade-off:
  - Al-driven HPC methods 1000 x *effective* performance of traditional HPC simulations
- Al-driven HPC methods will be formulated as heterogeneous and adaptive workflows:
  - Systems software evolve in response



#### **High-Throughput Virtual Scaling**

radical



NATIONAL LABORATORY

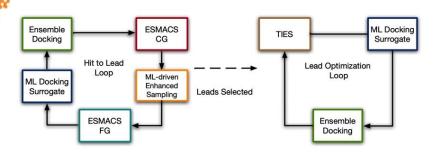
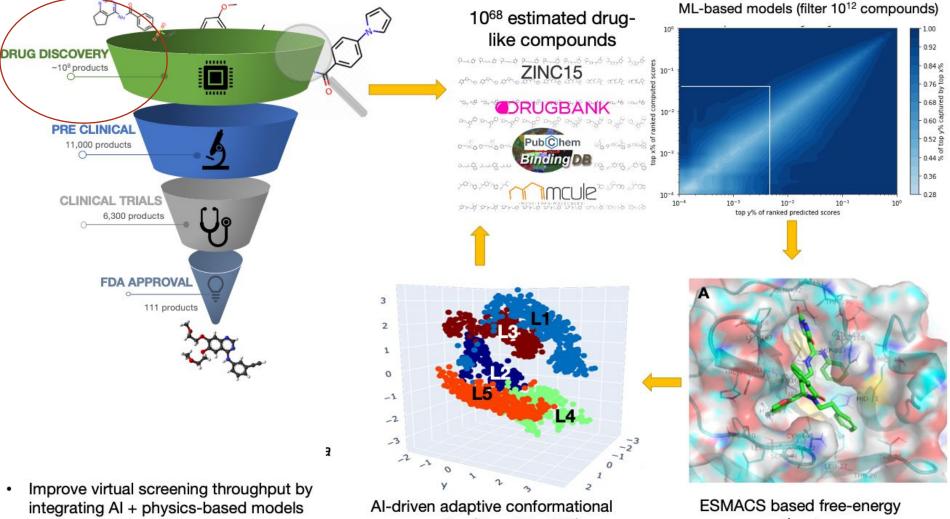



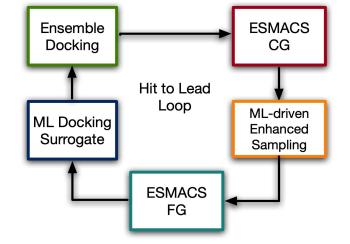

Figure 1: The computational campaign to advance COVID-19 therapeutics has two coupled loops: drug candidates go through four stages in the Hit-to-Lead loop; a small set of drugs are selected for the Lead Optimization loop. The following methods and protocols are implemented as distinct workflows (WF): Ensemble Docking (WF1), ML-driven Enhanced Sampling (WF2), both coarse-grained (CG) and fine-grained (FG) ESMACS (WF3), and TIES (WF4).

Ref. Aspuru-Guzik



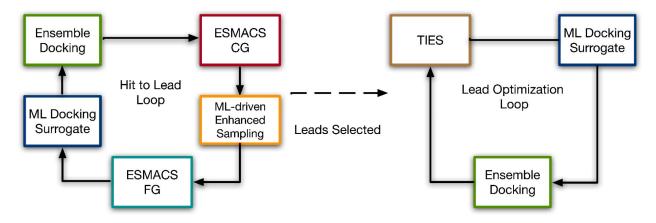
sampling (DeepDriveMD)

estimates


### **Campaign: Hit-to-Lead Loop**

**Multi-stage** campaign employed to select promising drug candidates:

- WF1: High-throughput ensemble docking to identify small molecules ("hits")
- WF2: Al-driven Molecular Dynamics for modeling specific binding regions and understanding mechanistic changes involving drugs
- WF3: Binding Free Energy calculations of promising leads ("Hit-to-Lead")

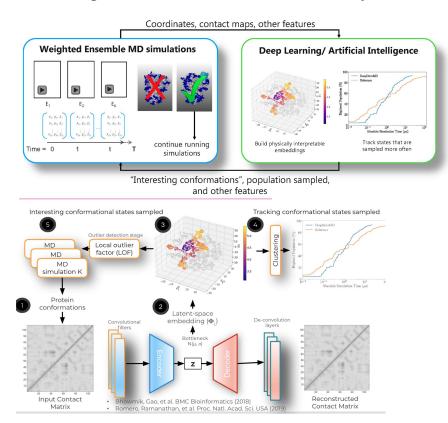

https://arxiv.org/abs/2010.06574

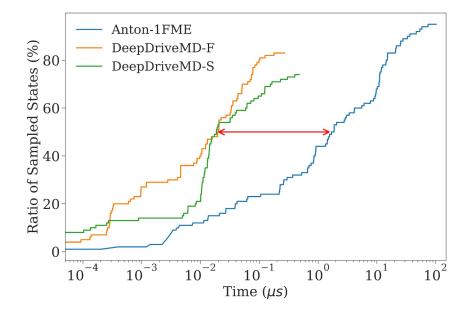
BROOKHAVEN NATIONAL LABORATOR



#### **Campaign: Lead Optimization**

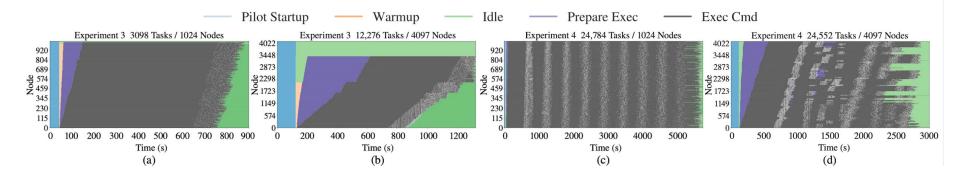
**Multi-stage** campaign employed to select promising drug candidates:





• WF4: TIES -- Alchemical Binding Free Energy calculations of promising leads (Lead Optimization)



#### ML-driven Ensemble (WF2): 10-100x Protein Folding


#### Combining AI with HPC: AI-driven MD simulations -- DeepDriveMD





#### **Characterizing RP on Leadership Platforms**

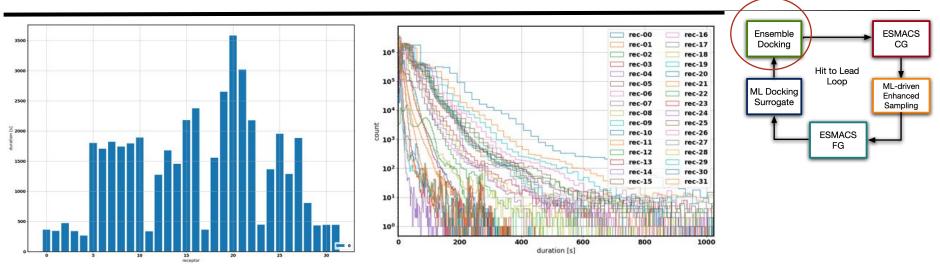
| ID     | HPC #Tasks<br>Platform |                                 | #Generations              | Task<br>Runtime            | #Cores/<br>Task                            | #GPUs/<br>Task | #Cores/Pilot                                     | #GPUs/Pilot   |  |
|--------|------------------------|---------------------------------|---------------------------|----------------------------|--------------------------------------------|----------------|--------------------------------------------------|---------------|--|
| 1      | Titan<br>Titan         | $2^n; n = [5 - 12]$<br>$2^{14}$ | $1 2^n \cdot n = [5 - 3]$ | 828s±14s                   | 32                                         | -              | $2^{n}; n = [10 - 17]$<br>$2^{n}: n = [14 - 16]$ | -             |  |
| 3<br>4 | Summit<br>Summit       | 3098; 12,276<br>24,552; 24,784  | $1 \approx 2; 8$          | 600s - 900s<br>500s - 600s | $\begin{array}{c} 1-42\\ 1-42 \end{array}$ | 0;6<br>0;6     | 43,008; 172,074                                  | 6144; 24, 582 |  |
| 5      | Frontera               | $120 \times 10^{6}$             | $\approx 300$             | 1s - 120s                  | 1                                          | -              | 392,000                                          | 8 <del></del> |  |



https://arxiv.org/abs/2103.00091



#### **Computational Challenges: Heterogeneity**

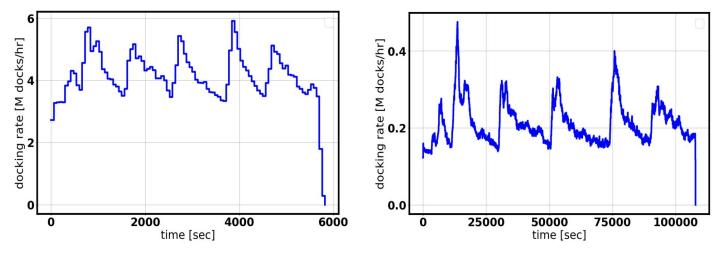

- Heterogeneity of different types and at multiple levels
  - Coupled AI-HPC (WF2)
  - High-throughput function calls (WF1)
  - Ensembles of MPI tasks (WF3/4)
- Spatio-temporal variation within and across WF1

| <b>HPC Platform</b> | Facility | Batch  | Node Architecture              |                | Workflows | Max # nodes          |
|---------------------|----------|--------|--------------------------------|----------------|-----------|----------------------|
|                     |          | System | CPU                            | GPU            | utilized  |                      |
| Summit              | OLCF     | LSF    | $2 \times POWER9$ (22 cores)   | 6 × Tesla V100 | WF1-4     | 2000                 |
| Lassen              | LLNL     | LSF    | $2 \times POWER9$ (22 cores)   | 4 × Tesla V100 | WF2,3     | 128                  |
| Frontera            | TACC     | Slurm  | $2 \times x86_{64}$ (28 cores) | _              | WF1       | 7650                 |
| Theta               | ALCF     | Cobalt | $1 \times x86_{64}$ (64 cores) | _              | WF1       | 256                  |
| SuperMUC-NG         | LRZ      | Slurm  | $2 \times x86_{64}$ (24 cores) | —              | WF3-4     | 6000 (with failures) |



### **Ensemble Docking: (WF1)**

BROOKHAVEN

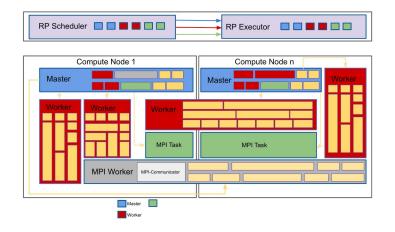



• Docking: OpenEye; Library (ORD): 6.25M ligands (drug candidate); 32 targets/receptors

- Fluctuations in docking execution time library (ORD) for different receptors
- Long-tailed Tx for different ligands for a given target (receptor)
- Many work items (function calls) need to be distributed
- Call duration varies two order of magnitudes (1-100s). Mean duration 8s.

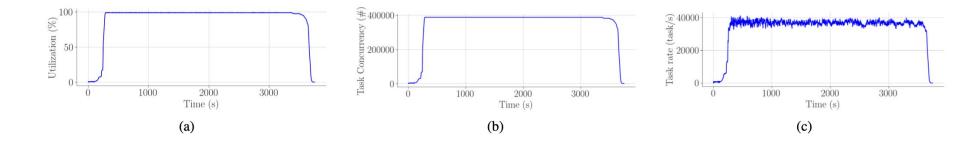
#### **Ensemble Docking: (WF1)**

(a)




(b)

• Docking: OpenEye; Library (ORD): 6.25M ligands (drug candidate); 32 targets/receptors


- Fluctuations in docking execution time library (ORD) for different receptors
- Long-tailed Tx for different ligands for a given target (receptor)
- Many work items (function calls) need to be distributed
- Call duration varies two order of magnitudes (1-100s). Mean duration 8s.

#### **Ensemble Docking (WF1) with RAPTOR**



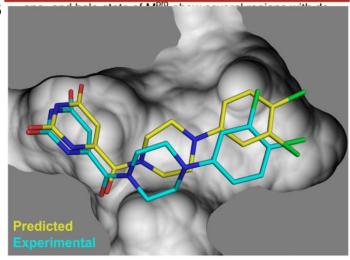
| ID | Platform | Application | Nodes | Pilots | <b>Tasks</b><br>[×10 <sup>6</sup> ] | Startup<br>[sec] | Utilization  | Task Time [sec] |      | <b>Rate</b> [ $\times 10^{6}/h$ ] |       |  |
|----|----------|-------------|-------|--------|-------------------------------------|------------------|--------------|-----------------|------|-----------------------------------|-------|--|
| 10 |          |             |       |        |                                     |                  | avg / steady | max             | mean | max                               | mean  |  |
| 1  | Frontera | OpenEye     | 128   | 31     | 205                                 | 129              | 90% / 93%    | 3582.6          | 28.8 | 17.4                              | 5.0   |  |
| 2  | Frontera | OpenEye     | 7600  | 1      | 126                                 | 81               | 90% / 98%    | 14958.8         | 10.1 | 144.0                             | 126.0 |  |
| 3  | Frontera | OpenEye     | 8336  | 1      | 13                                  | 451              | 63% / 98%    | 219.0           | 25.3 | 91.8                              | 11.0  |  |
|    | · ·      | A. D. 1     | 1000  | 1      |                                     | 107              | 050 1050     | 262.0           | 26.2 | 110                               | 111   |  |
| 4  | Summu    | AutoDock    | 1000  | 1      | 51                                  | 107              | 957019570    | 205.9           | 50.2 | 11.5                              | 11.1  |  |

#### **RADICAL-Pilot (RP) with RAPTOR : Performance**



| ID | Platform | Application | Nodes | Pilots | <b>Tasks</b><br>[×10 <sup>6</sup> ] | Startup<br>[sec] | Utilization  | Task Time [sec] |      | <b>Rate</b> [ $\times 10^6/h$ ] |       |
|----|----------|-------------|-------|--------|-------------------------------------|------------------|--------------|-----------------|------|---------------------------------|-------|
|    |          |             |       |        |                                     |                  | avg / steady | max             | mean | max                             | mean  |
| 1  | Frontera | OpenEye     | 128   | 31     | 205                                 | 129              | 90% / 93%    | 3582.6          | 28.8 | 17.4                            | 5.0   |
| 2  | Frontera | OpenEye     | 7600  | 1      | 126                                 | 81               | 90% / 98%    | 14958.8         | 10.1 | 144.0                           | 126.0 |
| 3  | Frontera | OpenEye     | 8336  | 1      | 13                                  | 451              | 63% / 98%    | 219.0           | 25.3 | 91.8                            | 11.0  |
| 4  | Summit   | AutoDock    | 1000  | 1      | 57                                  | 107              | 95% / 95%    | 263.9           | 36.2 | 11.3                            | 11.1  |
| -  | Summit   | AUTODOCK    | 1000  | 1      | 57                                  | 107              | 15101 9510   | 203.9           | 50.2 | 11.5                            | 11.1  |

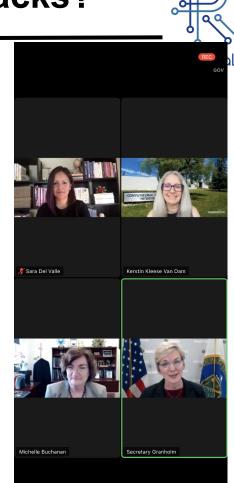





### **Impacting SARS-CoV-2 Medical Therapeutics**

#### • Scale of Operation:

- ~10<sup>11</sup> Docking calculations
- $\sim 10^3$  ML-driven MD calculations
- ~5 x 10<sup>4</sup> Binding Free Energy Calculations
- ~2.5 x 10<sup>6</sup> node-hours (~30 days, all Summit)
- Peak Performance
  - ~ 8000 nodes (Frontera, April. 2021)
  - ~ 4000 nodes on Summit
- Extensible Computational Infrastructure and Capabilities
  - Beyond COVID-19 ?

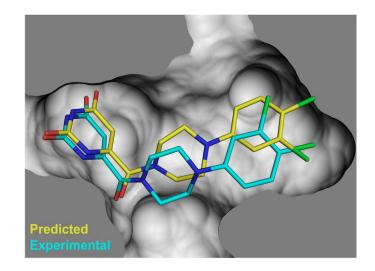

Fig. 4. Conformational changes upon MCULE-5948770040 binding to M<sup>pro</sup> indicate changes within distinct regions, both close-to and farther-away from the primary binding site. (a) RMS fluctuations of the



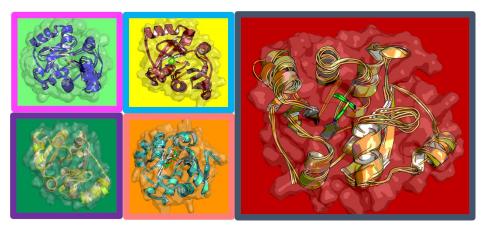


### **Therapeutics: Needle in multiple Haystacks?**

- Scale of Operation:
  - ~10<sup>11</sup> Docking calculations
  - ~10<sup>3</sup> ML-driven MD calculations
  - ~5 x  $10^4$  Binding Free Energy Calculations
  - ~2.5 x 10<sup>6</sup> node-hours (~30 days, all Summit)
- Peak Performance
  - ~ 8000 nodes (Frontera, April. 2021)
    - ~ 4000 nodes on Summit
- Extensible Computational Infrastructure and Capabilities
  - Beyond COVID-19 ?







## Summary

#### • ML enhances the effective performance

- ML "improve" performance of simulations
- " .... simulations are mere generators of data for powerful ML models" !
- Exascale computing on petascale platforms!
  - Developed 1<sup>st</sup> gen of AI-HPC infrastructure
  - Sophistication of AI-HPC methods will grow
- Rethink systems software ecosystem
  - Collective perf. of heterogeneous workflows; not just single tasks
  - Advances in adaptive runtime systems for such workflows



### Thank you!



#### Funding acknowledgement:

- DOE National Virtual Biotechnology Laboratory
- DOE CANDLE ECP
- ECP ExaWorks and ECP ExaLearn
- ASCR Surrogates Benchmarking Initiative
- NSF RADICAL-Cybertools

