Joint DOE / NIH Workshop

Advancing Medical Care through Discovery in the Physical Sciences

Radiotherapy Instrumentation Session

Particle Beam Instrumentation

Ben Clasie, PhD DABR

Massachusetts General Hospital and Harvard Medical School

Conflict of interest: None

Particle Beam Instrumentation for Radiotherapy

• Topics:

- Dosimetry devices
- Beamline instruments
- Discussion of instrumentation for "hot" topics
- Description of a pencil beam scanning nozzle

A proton pencil beam in water

Absorbed dose to water

Description:

- Approximately 60% of the human body is water
- Prescribed doses and current empirical knowledge is based on absorbed dose to water
- Water phantoms are relatively simple and convenient devices
 - Motorized phantoms can move a detector in 1, 2 or 3 dimensions
- State of the art: IC-based TRS-398, 2006 protocol
 - Air-filled ionization chamber (IC) in a water phantom in the path of the beam
 - $D_{w,Q} = Mk_{TP}k_{elec}k_{pol}k_{s}N_{D,w}^{60_{Co}}k_{Q,60_{Co}}$
 - Overall uncertainty 2.5%
 - Largest contributions are $N_{D,w}^{60}$ (1.4%) and $k_{Q,60}$ (1.7%)

Examples:

PTW

IBA Dosimetry

- IC damage/recalibration
- Uncertainty is a fairly large piece of the overall radiotherapy error budget ~5%
- Questions about use in scanned beams
- Calorimeters directly measure absorbed dose to water with smaller uncertainty but are not common and are difficult to use

Depth-dose measurements

Description:

• Measure PPIC/Ref chamber signal vs. depth

- Technically "depth-ionization" measurements
- The energy-dependence of the water/air stopping power ratio is usually small, even for carbon ions (≤ 1%)

Examples:

PTW Markus chamber, 0.5 cm diameter

IBA Dosimetry Stingray, 12 cm diameter

- Depth is a very challenging measurement
 - Preference to have motorized stages with encoders
- Recombination may change with depth
- Suitability of other detectors

 e.g., film, silicon, diamond, and
 scintillators usually compared
 to ionization chambers

Multi-IC devices: longitudinal

Description:

Examples:

- Multi-Layer Ionization Chamber (MLIC)
- Multiple parallel-plate IC separated in the longitudinal direction (depth)
- For instantaneous depth-dose measurements

Gottschalk, 2008

- Calibration done by the user using their water phantom
- Fast consistency checks

Multi-IC devices: planar

Description:

- 2D array of ionization chambers
- Largely for lateral profile measurements
- Can be scanned in depth

Examples:

IBA MatriXX PT/ONE 1020 ionization chambers

PTW Octavius 1405 ionization chambers

Pyramid, PX3, 120 pixels, 3.8 mm pitch

IBA Digiphant, 1D scanner with MatriXX

- These are very versatile, dependable and sensitive devices
- Need larger area array 30 x 40 cm, to sample entire beam with one acquisition
- Need finer pixel pitch either in the center or separate device to measure beam size and position
- Depth is a very challenging measurement

High-resolution lateral measurements

Description:

- High resolution measurements are needed when beam size,
 sigma ≤ IC array pixel pitch
- Measure sigma, position, virtual SAD
- Devices are available with <0.5 mm resolution
- Scintillator screen and camera

 Also, film + scanner, diode array (e.g. Magic Plate), diamond detector array, flat panel, GEM

Examples:

Lexitek Scintillator screen and camera

IBA dosimetry Scintillator screen and camera

Logos Scintillator screen and camera

Ashland Gafchromic EBT3 film

- Some of these detectors have LET dependence
 - Keep the detector in the entrance region when measuring position and sigma
 - Useful for QA (fast consistency check)
- Lexitek has a scintillator screen with small LET dependence

3D measurements

Description:

- Film stacks
 - IROC uses 2 orthogonal planes
- Bang Gel
 - Irradiate Gel
 - Use MRI or optical CT to read out

- 3D array of ion chambers
 - Layers of strip and parallel plate chambers interleaved with plastic slabs

Examples:

- None of the 3D measurements have really taken off in the community. This could be due to:
 - Complicated
 - Needs user calibration vs. ion chamber
 - LET dependence
 - Ease of use

Origin alignment

Description:

Examples:

- Check alignment of the imaging origin with the nozzle axis
- BB, Film and scanner
- Align BB with imaging system, shoot BB with beam, examine film behind it

Comments:

- Very intuitive
- Slow

- Scintillator screen and camera
 - Puck at the end of cone is aligned by imaging
 - Scintillator captures the trajectory of the beam

- Much faster
- Currently needs user calibration vs. film

Logos. Conical scintillator screen and camera

Faraday cup

Description:

- Collect the charge or current of the beam itself with a beam stop
- Traditional Faraday cup
 - Magnetic field and vacuum to manage secondary electrons

Examples:

BRASS -BLOCK

Traditional Faraday cup, Verhey, 1979

- HCL Faraday cup
 - Brass beam stop wrapped in Kapton and surrounded by conductive sheet

Comments:

- Useful to check recombination in other devices
- Challenging with collimator/aperture scatter
- Challenging with C-ion beams due to nuclear interactions
- Traditional Faraday cup accuracy better than 1% with narrow proton beams
- HCL device response vs. traditional ~3% for protons with E> 50 MeV but much easier to use
- Gp vs. MU. Gp makes more sense for scanning nozzles because MU is not related to dose anymore

Pyramid Faraday cup and Multi-layer Faraday cup

More comments on dosimetry

- Most instrumentation is built for photon therapy and adapted for particle therapy
 - Diodes vs. ion chamber
 - Pixel placement for a photon beam
 - Synchronizing acquisition with irradiation
- Avoid requiring the end user to calibrate the device
 - Fast consistency checks can be the exception
- Efficiency
 - Combining acquisitions, e.g. detector arrays
 - Rapid analysis
 - Lighter/smaller
 - Workflow
 - Cost
- Detector geometry
 - Thinner, smaller pixel spacing, wider area
- Accuracy
- Robustness
- Log file analysis to eliminate some measurements

Particle therapy machine instrumentation

- Wide area (integral) chambers for MU (or Gp), which monitor the number of protons during a treatment
 - The primary chamber stops the beam at a target MU
 - <u>Extra MU</u> delivered or collected after target is reached
- Segmented IC, strip IC, multi-wire IC, or scintillator screens are used for monitors in the beam line

- Magnetic field probes check beam line magnets and nozzle scanning magnets
 - Can feedback to power supply to correct for hysteresis
 - Types
 - Hall probes, e.g. Pyramid Technical Consultants, Group 3
 - NMR

More comments on machine instrumentation

- Thin devices (for those devices in the path of the beam)
 - Preference to have devices constantly monitor the beam rather than retractable
- Compact geometric size
 - Sometimes we don't have enough instrumentation due to available space, e.g. two sets of BPMs just before the gantry to align the beam with the axis
- Faster instrumentation and/or suitable for higher beam currents
 - Faster irradiation time
 - Improve task schedule frequency to check the beam more often
- Reliability
- Devices that provide feedback to control the beam in real time, e.g. beam position and sigma, rather than just interlock

"Hot" topics

- Prompt gamma
 - Detecting the depth of treatment by prompt gamma rays
- Proton radiography
 - Detecting residual range and position of transmitted protons
- FLASH
 - Very high dose rates ~100 Gy/sec
 - Synchrocylotrons at higher beam currents
- PET
- MRI protons
 - Dosimetry in a magnetic field
- Arc therapy
 - Cylindrical array of ion chambers
- Microdosimetry and biological response
 - Structure of dose deposition at the size of a cell (and DNA), lineal energy measurements
 - Dose in tissue or LET effects
- In-vivo dosimetry
 - Size, read-out, workflow, accuracy, patient comfort, access to target, and voltage concerns
 - Clinics should do more to check the actual dose in the patient e.g. TLD, diodes

Summary

- Ionization chambers are the most widely used instrument
 - 1D and 2D arrays are available
 - 3D, wide field, and high resolution still WIP
- Other instruments discussed
 - Scintillator screen + camera
 - Film
 - Faraday cup
 - Calorimeter
 - Magnetic field probes