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" HRRT @ Yale PET Center

 State-of-the art for brain PET

* Design > 20 years old

e ~ 4500 human studies

e ~ 50 different tracers

e ~ 50 current NIH grants for brain PET at Yale

* Dynamic (list-mode) acquisition for 60-150 min
* Arterial blood sampling in ~ 60% of the scans

* Operating at ~ 3 mm resolution (probably)

* Online hardware motion correction
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What can brain PET do? >
(in principle)

e With the right radiopharmaceutical (tracer)

e ... and the right imaging technology

e ... and a feasible human imaging paradigm

e We can quantitatively assay virtually any physiological process throughout
the brain
e Blood Flow
e Metabolism
¢ Protein concentrations
e Enzyme synthesis rates
e Drug occupancy

e Neurotransmitter dynamics

¢ \What are the limits?

e How can advances in instrumentation and algorithms expand the scope?
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Factors that affect what brain PET can
realistically do

e How much of the target protein is present in the brain (B,,,,, pPM/nM)

e Synaptic marker or a-synuclein?

e How much “background” uptake?
e Non-specific uptake
e \What size brain region is relevant to the biological question

e Entire frontal lobe or the substantia nigra

e How efficiently do the tracers enter the brain (BBB)

e |s blood flow a compounding factor?
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Factors that affect what brain PET can ?
realistically do 10 Pu
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* The overall kinetics of the tracer % ° H::::. C
- ...‘. L u X
e How long should the scan be? S ° ‘299532529 TIT FCx
°© Cogiil A CN
e |s a short scan useful? Or misleading? é ) LYYV 3-.80 e Thal
g 2 AAAAAAAAAAAAAA e CB
A WM

e What kind of patients are we studying?

0 2.0 4.0 6.0 8.0 1(.)0 150
e Can they tolerate such a protocol? Time (min)

e How large is the change in disease? Or by competition with a drug?
® 50% or 5%

e How large is the change over time?

* 1% per year?

e Are protocols too complex even for most research centers?

e Hospitals?



Challenges

eSensitivity and noise
e|mage resolution
eTracer kinetics

eHuman Issues

e|nput Function
eHead Motion
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(@ NeuroEXPLORER

* BRAIN Initiative grant (UO1EB029811)
* Collaboration between Yale, UC Davis, and United Imaging Healthcare America

* A fully-functional well-characterized commercially-available brain PET system
At least 10-fold higher effective sensitivity than the HRRT
Useable resolution of <2 mm in the human brain

Continuous motion correction

Dramatically expand the scope of brain PET protocols and applications
Study of the healthy brain
» Study of pathophysiology including the earliest stages of neurodegeneration

10



Challenges

eSensitivity and noise
e|mage resolution
eTracer kinetics

eHuman Subjects
eHead Motion

e|nput Function
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Sensitivity and noise

e For a given human patient

e And a target injected radiopharmaceutical dose

e And a given scan instrumentation

e And a given scan duration

e And a given reconstruction algorithm

e And a given post-processing noise-reduction method
e And a target brain area (voxel)

e With a given quantitative outcome measure
e Standardized uptake value
e Binding potential

e How variable?

e Any bias?



et What have we learned abut sensitivity from the
HRRT at Yale

* Insufficient system sensitivity
* Counts are usually the limiting case
* Radioactivity images are often noisy
e Parametric images from voxel-by-voxel kinetic modeling are noisier

e Some form of filtering / noise reduction is needed
* Usually costs us resolution

* We rarely can produce images at the system’s best possible resolution
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What have we learned from the EXPLORER

at UC Davis

High sensitivity enables high SNR for short
scan durations

OO G »

300 sec frame

Ki

0.06
This enables parametric
imaging at high spatial
resolution with no I
smoothing. -
0

Also enables sub-second
temporal sampling of the
arterial input function and
bolus arrival times and
transit times

0.1 sec
frames
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Bet High sensitivity in Next-Generation Dedicated >
Brain PET

Needed to achieve high resolution
* Need enough counts per resolution element

* Improved quantification
* Many useful tracers labeled with C-11 (20-min half-life)
* For longer scans with slower kinetics, especially for regions with highest binding
* For targets with low concentration (B

* Assess dynamics
* Neurotransmitter release due to stimuli
* Large changes in small regions or small changes in large regions

* Low noise
* To precisely measure small longitudinal changes in disease

* Lower injected dose
* Pediatric imaging
* More repeat scans

max)



NX — Focus on Sensitivity

To maximize the sensitivity for the brain: 50-cm axial FOV
Center the brain in the axial FOX
« Uniform sensitivity throughout the brain
Partial 6t ring to accommodate all shoulder sizes
« 3 blocks removed on both sides
With TOF, 10-fold higher sensitivity than the HRRT

6 axial blocks for %
high-sensitivity 5
brain imaging

blocks removed %
in shoulder

region (6%ring)

for positioning

simulation
brain region

carotid region shoulder region
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Regularized PET reconstruction using deep neural network

* The basic idea is to represent the unknown PET image as an output of a pre-trained
deep neural network and preform a constrained maximum likelihood estimate:

& = argmax L(y|x), st.,x=DNN (acr,apgpr)orx =DNN(apypri2peT)

where DNN: RY — RN denotes a pretrained denoising DNN and apgr denotes the input
(Low-count , high-noise PET images) to the neural network.

* Both inter-patient information and intra-patient information can be included into the
iterative reconstruction framework by pre-training a DNN using high-resolution low-noise
PET images obtained from existing data as labels.

[1] K Gong, J Guan, K Kim, X Zhang, J Yang, Y Seo, G El Fakhri, J Qi, Q Li. [EEETMI, 2018
[2] Z Xie, X Zhang, T Li, W Qj, E Asma, J Qi. SNMMI 2020

Courtesy Jinyi Qi



@ Deep Learning Denoising for HRRT Data (*1C-UCB-J) ®

10% b
Low dose

10% with®
U-Net

Courtesy Chi Liu
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Direct Reconstruction of Parametric Images

Indirect (Frame-Based) Reconstruction

C.()=K,C,()®e™|

Kinetic
Model
Fitting

Time Series of
Emission Images

Parametric
Images

X

ijtTr

~ Poisson(Azc,C, (1) ® Ke™) |

Direct Reconstruction
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f{@\t [11CJUCB-J: VT images (single replicate)

\ Indirect V; ] \ Direct V;

Count
Level Increasing Iteration > Increasing Iteration ->

100%

20%

20

Germino et al, Phys Med Biol, 2017



Challenges

eSensitivity and noise
e|lmage resolution
eTracer kinetics

eHuman Issues

e|nput Function
eHead Motion



Bel High resolution in Next-Generation Dedicated >
Brain PET

* Image focal structures
* Raphe nucleus, Locus coeruleus, substantia nigra, entorhinal cortex
 Distinguish distribution across cortical layers (1-2 mm) in human beings

* Reduce partial volume effect
 Distinguish atrophy effects from loss of target proteins in remaining tissue

* Ensure uniformity of image resolution
e Over space and time

* Measure the tracer input function
 HRRT's resolution not good enough for carotid artery quantification
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BPnD
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Synaptic Density in the Substantia Nigra

in Parkinson’s Disease

® PD subjsts

hayh

® HC subjects

Matuskey et al, Ann Neurol, 2020

Fig 6. SN shown on MRI template (left) and between the PD (center) and HC subjects
(right) on averaged group BPyp ''C-UCB-J images.
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Ak What have we have learned from the EXPLORER?

« Depth-of-interaction (DOI) is essential for high-resolution imaging
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Depth-of-Interaction and Inter-Crystal Scatter detection

Optical bridge

&
Y/
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Transverse

1.5mm

ww L'gl

Axial
(DOl-encoding)

NX micro-block
(4 x 2 crystals)

NX micro-block detector

« Single-end readout
« Easy to manufacture / low-cost
« Good DOI resolution < 4mm

Inter-crystal scatter (ICS) up to 30%

25
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Novel Reconstruction to use Unique NX Features

* Depth of interaction (<4mm DOI resolution)

e Uniform resolution in space

* Improve axial resolution by using DOI-induced

oversampling
e Shoulder cutouts

» Take advantage of the added oblique LORs without
introducing artifacts into FOV

* Deep learning can be used to reduce limited angle artifact

when necessary

* With a huge number of counts, push spatial
resolution by accurately modeling the physics:

* Positron range

* Photon-pair acollinearity
* Inter-crystal scatter

6 axial blocks for
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Ultra-high resolution insert

* Open platform for zoom-in or multi-organ
Imaging

* Improve resolution and sensitivity for imaging
carotid artery

Pitch size: 1.5 mm

* Image reconstruction using all events:
* NX coincidences
* NX-insert coincidences (higher res.)
* Insert-insert coincidences (highest res.)

* Goal: high-resolution images without limited ; s
angle artifa Cts EneDrg\l/:r?:efoTJ:’]on: EneDr:\I/:rge.sonJ:on: EneDrg\Il:rze-ZoEfc?on: Entgrg:/:rtfomi?on:

21.8% 18.4 % 26 % 10.5%




Challenges

eSensitivity and noise
e|mage resolution
eTracer kinetics

eHuman Issues

e|nput Function
eHead Motion
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Radioactivity Patterns Change with Time

Tracer: 11C-AFM
Target: Serotonin Transporter

Analog of Selective Serotonin
Reuptake Inhibitors (SSRI)

* Prozac, Zoloft,...

Time-varying distributions
Is there a best single time to scan?

What can we do with dynamic
data?

How to analyze this?

40-60 m

Flow
information

SSRI
information

+++

++

++

+++
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fek PET Modelmg
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Goals of PET Modeling

* Understand the relationship between the tissue measurements and
the underlying physiology (blood flow, metabolism, etc.)

* Account for the effects of tracer availability (input function).

* Determine what parameters can be measured

* Devise study methodology

* Prove that the method measures the parameter(s) of interest.
* Verify that the method is not influenced by other parameters.

* Produce images of physiological parameters (parametric images)
* Produce a simple and accurate patient protocol.




Yale

Amyloid Example Where Modeling Helps

Kinelic analysis I Summed image

* Test-retest study

EP,,

* Less variability in
, modeling results

=
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>
v
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FIGURE 6. BP,p and SUVr (60-90 min after injection) for ''C-Pitts-
burgh compound B scans of Alzheimer disease patients at 2 time points
2-4 y apart (horizontal axes represent months after baseline scan). Pa-

tients did not receive antiamyloid therapy during interval between

scans. SUVr shows a small but significant countenntuitive decrease in Forward to the Past: The Case for Quantitative
amyloid load, whereas BP)yp remains unchanged. .
g i t PET Imaging

Adrian A. Lammertsma

Departmers of Radiology and Nuclear Medicine, VU University Medical Coster, Amsserdan, The Netherl ands

J Nud Med 2017; 58:1019-1024
DOE: 102967 fnumed. 116.183029
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Bel Studying Drug Effects:
Input Functions

O R N W & U1 O

* Drug and tracer target the same site Uptake
m Baseline
* We expect dose-dependent reductions in specific tracer Low Dose
binding following administration of a competing drug e

* Typically, blocking drugs reduce tracer in tissue, and increase tracer in
the blood

* Increased bioavailability (the input function)
* Increased nonspecific uptake

e Net effect depends on relative magnitude of specific and non-specific
uptake, and tracer’s kinetics



Bt Brain Enzyme Inhibitor Study ’

Differences Among Brain Regions Without Modeling

SUV
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* Occipital: large decrease
 Temporal: small decrease
* Frontal: small increase!
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Bet Brain Activation — Separating Blood Flow from
Synaptic Density . -

R)

* 7 healthy subjects

e 2 [11C]JUCB-J scans K/O
e 60 min. baseline Hy' 10N

* 60 min. with continuous intermittent visual
activation

e 8Hz flickering radial checkerboard

in blood flow (tracer delivery)?

35
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Results

A K, B30 vy C BPyp
s
£ % —, Ta = . g
g =1 8—1 * 35% increase in K1 in primary
T e crn T i visual cortex.
o Baseline * No change in V; or BPp.
¢ Visual Activation
Vi baseline F BPw besae * Could not separate the 2
effects without kinetic
modeling
activation activation activation .,‘,\ e 11C.UCB-J binding is a stable
7y ’/: "“ﬂ in vivo measure of SV2A
4 & 7 density despite increased

Y

vesicle release.

Smart et al, JCBFM, 2020



Synaptic Density in Alzheimer’s Disease
Separating blood flow from binding
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Tradeoffs of PET Modeling Studies

* Absolute quantitative outcome measures vs. relative, sometimes
ad hoc indices

 What is the biological or clinical question?

* Typical modeling results have higher
noise than radioactivity images

* Scan durations are longer

e Can be partially compensated with
higher sensitivity, larger regions, or
lower spatial resolution

* More complex and expensive

* Can (sometimes) provide more specific information or avoid
misinterpretation of results

9.
8.
7.
6.
5.
4.
3.
2.
1.
0.
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Challenges

eSensitivity and noise
e|mage resolution
eTracer kinetics

eHuman Issues

e|nput Function
eHead Motion



et Human Arterial Input Function and

Radioactivity (SUV)
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Carotid Artery Imaging

* Accurate input function for kinetic analysis
* Arterial sampling is invasive and less desirable

* Image-derived input function is more desirable,
but we only have carotid artery in the FOV

* Challenges:
* Small size of the carotid arteries
* Different tracers
 Dynamic range of contrast

 Validation of the carotid artery input function Target: Muscarinic (M1) Receptor
* Validation using phantoms (digital or physical phantoms) Image: MIP of summed activity
 Validation using human data (arterial samples) (0 -1 min)
* Validation of different tracer uptakes Scanner: HRRT

Tracer: 11C-LSN3172176



HRRT Online Motion Correction

Vicra
* Target on subject’s head

* Provides motion information
at up to 20 measurements per sec

e Put each event back where
it belongs

15

Displacement (mm)

-15

Time (min)
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Head motion correction in PET

> Hardware

* Marker-based Polaris Vicra
* Vicra, >4000 scans at Yale, continuous, accurate (Yale uses it on HRRT
* Subjective to light reflector mounting issue or positioning and Siemens mCT)

 Markerless
* Stereo camera-based, Yale has a proto-type
* May be subject to face expression and hair
» Multi acquisition frame (MAF): “registration among predefined frames”
* Registering predefined frames with attenuation correction (AC)
e Easy to apply, but suffer both AC mismatch artifacts and intra-frame motion
* Registering predefined frames without AC
e Extra recons required, but still suffers intra-frame motion
» Data-driven
e List-mode based motion detection + MAF
* Detection using Centroid-Of-Distribution (Yale) or Principal Component Analysis
* Analytical continuous motion estimation
* Proto-type
* Deep-learning based continuous motion estimation
* Yale is leveraging the >4000 Vicra as gold-standard to develop neural network to estimate
head motion

43




el Real-time Markerless Motion Tracking (MLMT)

Stereovision with Structured Light

Top-class precision enabled by unique
WindMill™ structured light technology

Independent of ambient light with

advanced laser technology

Real-time streaming of 3D point clouds
provided by novel fiber communication
design and state-of-the-art processor

Ongoing human testing on Siemens mCT

= "Head-to-head”

vs. Vicra

Participant 1
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-~ o3
No motion g‘g 3
. - <
correction e:d -

- % g% S i @
- B BN




pek Pushing the envelope:
Small brain nuclei with slow kinetics

e Small midbrain nuclei (raphe nuclei, substantia
nigra, ventral tegmental area)

 11C-PHNO (D,/D; receptors) BPyp in SN and VTA
» 11C-AFM (serotonin transporters) BPyp in the raphe

* Current PET systems have poor reliability in these
regions

* 11C-PHNO binding potential (BPyp) in SN has
20% reproducibility.

MRI
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get Pushing the envelope:
Dopamine release in
frontal cortex with a stress task

* We have previously measured smoking-
induced dopamine release in the striatum
with dynamic modeling: lpntPET

ajey aAIISOd anJ|

* We propose to do the same in the cortex with

400 500 600 100 200
Max DA (% above baseline)

a stress task

* Small DA response in a large (?) region _=| —pwer | —poeer
N -
e Simulations show the increased NX count 5 , It
sensitivity will dramatically increase detection | ey |

sensitivity to DA dynamics o @ w oW @ m b % w w oam W

Time (min)



pel Pushing the envelope in Neuropsychiatric
Disorders

* Earliest stage of neurodegeneration
in AD and other dementias

 Entorhinal cortex

* Earliest stage in Parkinson’s disease
e Substantia nigra

* Smaller brain nuclei
* | ocus COEFUlEUS

* Measure protein targets within layers of cerebral cortex
e ~¥2 mm wide
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Research Scanning in Adolescents?

e Can we use our synaptic marker *C-UCB-J in adolescents
(without sedation):

e Autism Pruning — Autism & Schizophrenia

AIAN (13 |

* Schizophrenia ?Li ,,‘; A

One tenth the radioactive dose limit

Parental consent

* Can we do the scan for the equivalent radiation
dose of a “cross-country” flight?

At Birth 6 Years Old 14 Years Old

 How to get there?

* Great sensitivity
e Great head motion correction
* Great algorithms (Direct reconstruction, Deep learning)

48



Summary

* PET imaging provides a superb window into normal biology
and pathophysiology in humans and animals

* Brain PET has been a particularly fertile area of development of
novel tools and in vivo assays through the combination of
innovative radiopharmaceuticals and quantification algorithms

. Ihm roved hardware (higher sensitivity and resolution) always
elps
* Cool, elegant algorithms can too, but they should be validated
for each imaging situation and radiopharmaceutical

* Good basic science can translate into powerful and clinically
relevant imaging methods

* Next generation of instrumentation and alfgorithms will open
many new and exciting windows on brain function and disease.
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