

An Advanced Superconducting Cyclotron for Variable Energy Hadron Therapy

<u>Joseph V. Minervini</u>, Leslie Bromberg Novum Industria LLC Harvard, MA

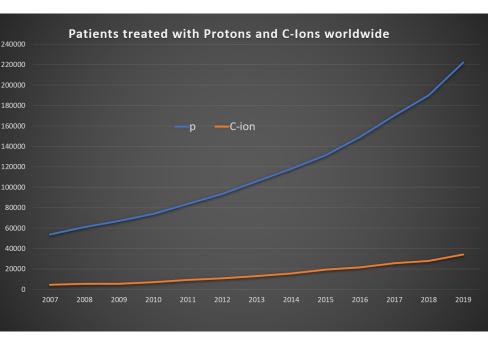
Alexey Radovinsky, Philip Michael, Daniel Winklehner Massachusetts Institute of Technology

Cambridge, MA

DOE-NIH Workshop Advancing Medical Care through Discovery in the Physical Sciences (12-13 July 2021) · Virtual

- Motivation
- Evolution of Cyclotrons for Proton Radiotherapy
- Technical Innovation
- Benefits
- Transformational Features
- Summary
- Acknowledgement: Work partially supported by:

U.S. Department of Energy, Office of High Energy Physics Accelerator Stewardship Program Federal Award Identification Number: DE-SC0013499

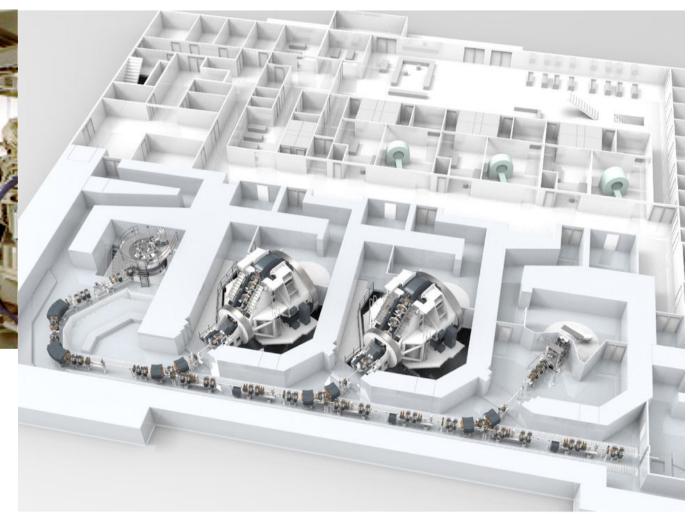

Motivation

- Per end of 2020 more than 290,000 patients have been treated worldwide with Particle Therapy:
 - > ~250,000 with protons
 - ≻ ~40,000 with C-ions
 - > ~3,500 with He, pions and with other ions.
- 89 proton radiotherapy centers operating worldwide
 - ➢ 35 in USA
 - 41 proton radiotherapy centers under construction
- 13 carbon radiotherapy centers operating worldwide

Historically hadron radiotherapy centers have been huge installations with multiple treatments rooms costing as much as \$200M per facility for protons and even more for carbon.

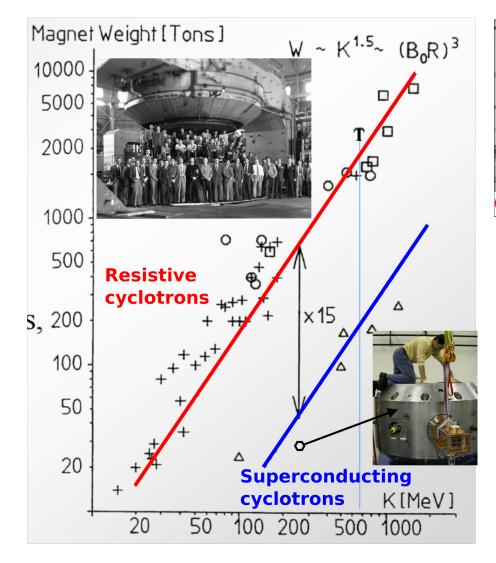
More recently companies have reduced the number of treatment rooms per facility (1-2) and reduced the accelerator size for protons by using superconducting cyclotrons. DOE-NIH Workshop Advancing Medical Care through Discovery in the Physical Sciences (12-13 July 2021) · Virtual

- This change in facility size has been driven by the desire to reduce the cost of proton radiotherapy and to increase the availability to the wider population.
- To make the benefits of hadron therapy available to more people we must:
 - Reduce the cost of the system
 - Reduce the footprint
 - Simplify the system
 - Simplify the operation
 - Improve the accuracy and effectiveness of the particle beam


IBA C230

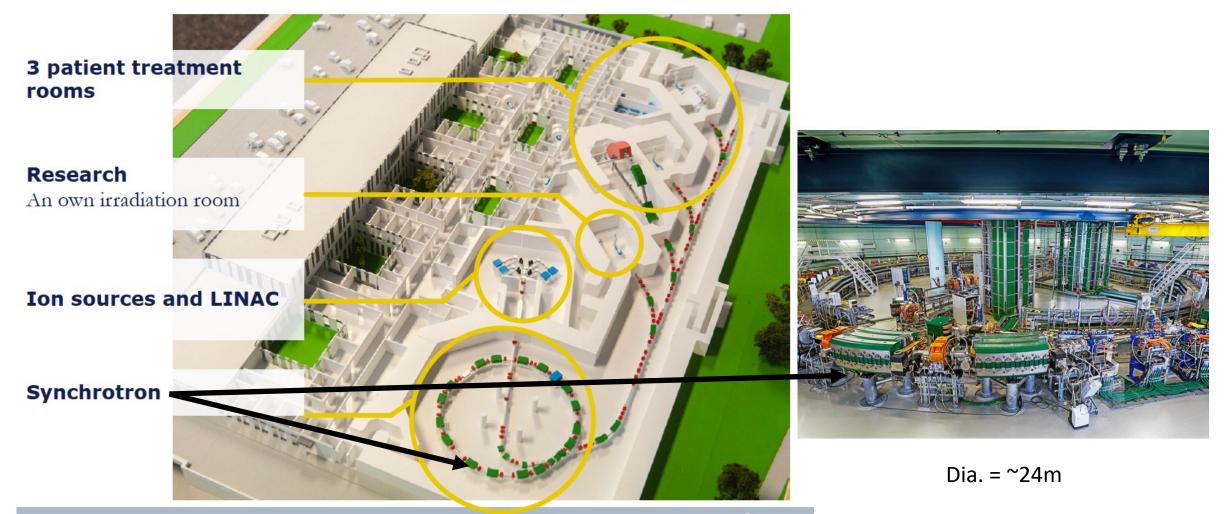
- 230 MeV protons
- 4.3 m Diameter

Massachusetts Institute of Technology


THE

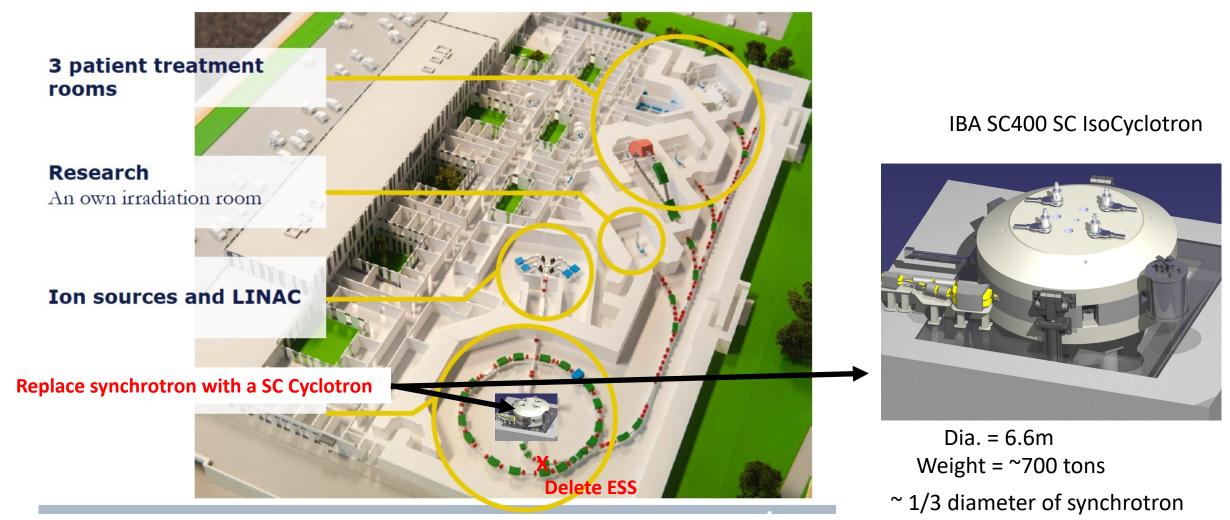
- CW beam
- Normal conducting
- Magnet: 200 kW
- RF: 60 kW
- ~240 tons

DOE-NIH Workshop Advancing Medical Care through Discovery in the Physical Sciences (12-13 July 2021) · Virtual



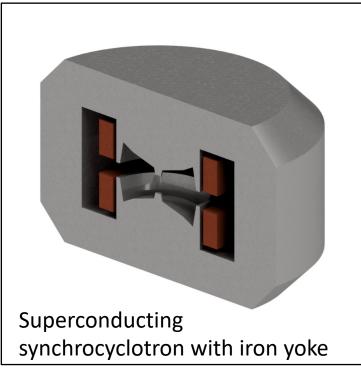
	Mevion S250	IBA S2C2	Varian Proscan	IBA C230
Magnet Type	Superconducting	Superconducting	Superconducting	Copper
R pole (m)	0.34	0.50	0.80	1.05
D Yoke (m)	1.80	2.50	3.10	4.30
Height (m)	1.20	1.50	1.60	2.10
B _o (T)	8.9	5.7	2.4	2.2
B _f (T)	8.2	5.0	3.1	2.9
Mass (mt)	25	46	90	240
T _f (MeV)	254	230/250	250	235

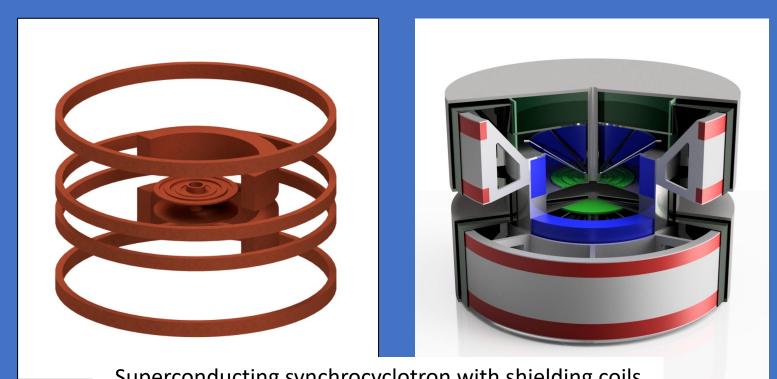
Carbon Systems are Even Larger MEDAUSTRON FACILITY



DOE-NIH Workshop Advancing Medical Care through Discovery in the Physical Sciences (12-13 July 2021) · Virtual

Carbon Systems are Even Larger MEDAUSTRON FACILITY


DOE-NIH Workshop Advancing Medical Care through Discovery in the Physical Sciences (12-13 July 2021) · Virtual



Technical Innovation

- Start with a superconducting synchrocyclotron and then remove all iron from the flux circuit (iron yoke).
- Shield external field with superconducting coils as is done in present MRI magnets.

Superconducting synchrocyclotron with shielding coils

DOE-NIH Workshop Advancing Medical Care through Discovery in the Physical Sciences (12-13 July 2021) · Virtual

Technical Innovation

• Beam energy is quadratically proportional to magnetic field and radius at extraction (synchrocyclotron):

$$T_{ex} = \frac{q^2 B_{ex}^2 R_{ex}^2}{2m}$$

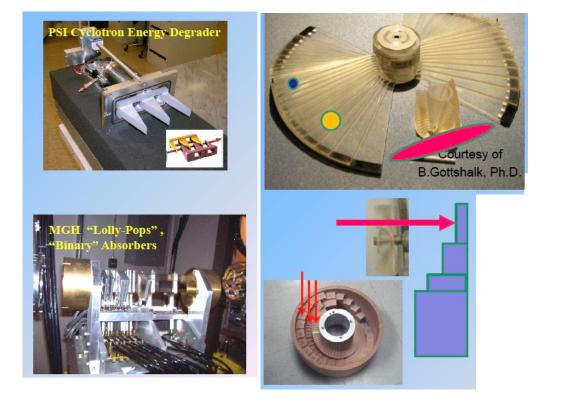
• Removing all magnetic material from the magnetic circuit makes the field magnitude *linearly* proportion to the operating current at all radii:

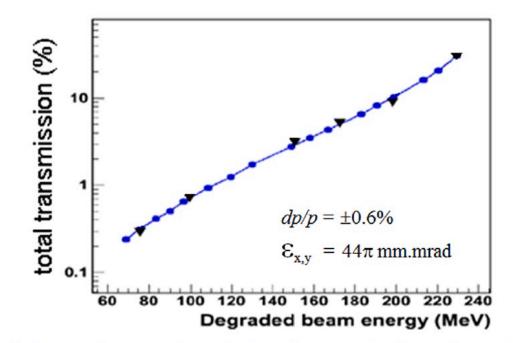
$B \propto I$

• Thus, beam energy can be varied directly by changing the magnet operating current.

Benefits

- Variable Beam Energy by controlling magnet current
- Elimination of degraders for energy variation
 - Greatly reduced secondary radiation, material activation, and need for large shielding Next slide
 - Significantly reduced beam dispersion, no loss of beam current, easier focusing
- Significantly reduced weight increases transportability
- Reduced fringe field
- Larger mid-plane and axial bore clear spaces –
 use interchangeable (Ion Source/RF/Extraction) cassettes for different Ions (protons, lithium, carbon)
- Plenty of space inside the cryostat can be used for efficient low density radiation shields
- No need to shim the iron big advantage for mass production and commissioning
- No external iron no positive magnetic stiffness, simpler cold mass support
- No cold iron less load on cryogenics
- Scaling laws ease magnetic design process





Benefits

• Elimination of degraders for energy variation

Greatly reduced secondary radiation, material activation, and need for large shielding
 Significantly reduced beam dispersion, no loss of beam current, easier focusing

Fig. 4. Example of typical transmission with energy through a cyclotron degrader and ESS: the Paul Scherrer Institute PROSCAN facility; figure reproduced from [60].

[60] Gerbershagen A, Baumgarten C, Kiselev D, van der Meer R, Risters Y, Schippers M. Measurements and simulations of boron carbide as degrader material for proton therapy. Phys Med Biol 2016;61(14):N337–48. https://doi.org/10.1088/0031-9155/61/14/n337.

Transformational Features

- Ability to deliver full beam intensity at all beam energies enables FLASH treatment
 - If proven effective, will have a huge reduction of treatment costs by an order of magnitude reduction in required treatment cycles.
- Scalability to heavier ions all the way to carbon will have high impact on size of accelerator and the space required.
- The radiation oncologist would be able to optimize treatment for each individual and type of cancer suited to ion radiotherapy.
- Will increase access to critical ion beam therapy to serve a larger population of patients and treat a wider range of cancer types.

Summary

- Superconducting cyclotrons are replacing restive cyclotrons for PBRT.
- New developments in superconducting magnet technology can be used to to design *variable energy cyclotrons* rather than fixed energy cyclotrons required and remove the wasteful energy degrader.
- This opens up new treatment methods such as FLASH therapy.
- The technology can be extrapolated to reduce the size, cost, and complexity of heavy ion systems up to carbon.
- These innovations will lead to much wider acceptance of hardon radiotherapy and significantly expanded patient access to this critical medical technology.