DOE/NIH Joint Workshop Advancing Medical Care through Discovery in the Physical Sciences

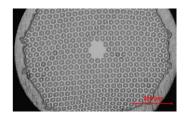
Risk Reduction and Design of a 16-T MRI Magnet

July 12, 2021

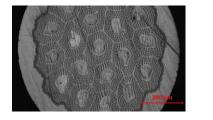
GE Global Research Minfeng Xu

Outline

- Magnet design considerations
 - Nb3Sn inner magnet, 9 T
 - NbTi outer magnet, 7T
- Nb3Sn conductor design
 - Evaluated 4 vendors
 - Working with Furukawa closely on the design
- Nb3Sn superconducting joint development
 - Unreacted wire joint
 - Reacted wire joint
- Electromagnetic design of a 16-T MRI magnet
 - Bore size
 - Homogeneity
 - Fringe field

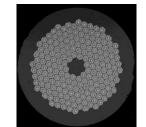

- Magnet design considerations
 - Nb3Sn inner magnet, 9 T
 - NbTi outer magnet, 7T
- Nb3Sn conductor design
 - Evaluated 4 vendors
 - Working with Furukawa closely on the design
- Nb3Sn superconducting joint development
 - Unreacted wire joint
 - Reacted wire joint
- Electromagnetic design of a 16-T MRI magnet
 - Bore size
 - Homogeneity
 - Fringe field

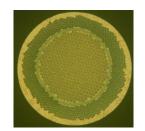
NbTi MRI magnets up to 7 T mature in technology – product available GE Global Research is building a brain 7T magnet with NIH funding Inner Nb3Sn magnet produces 9 T in the 7 T background field Total 16 T in the image volume


- Magnet design considerations
 - Nb3Sn inner magnet, 9 T
 - NbTi outer magnet, 7T
- Nb3Sn conductor design
 - Evaluated 4 vendors
 - Working with Furukawa closely on the design
- Nb3Sn superconducting joint development
 - Unreacted wire joint
 - Reacted wire joint
- Electromagnetic design of a 16-T MRI magnet
 - Bore size
 - Homogeneity
 - Fringe field

Nb3Sn Conductor Design Evaluated Nb3Sn wires from 4 vendors

• Supercon, Luvata, HyperTech, and Furukawa


Supercon Bronze Process


Supercon Internal tin

Luvata Internal tin

HyperTech Rod restack

Furukawa Nb/Cu reinforced

Furukawa Electric (FEI) design could take high stress under the 16 T field Working with FEI closely to develop a new cross-section for our design

Select Furukawa rectangular Nb/Cu reinforced wire

Advancing Medical Care through Discovery in the Physical Sciences

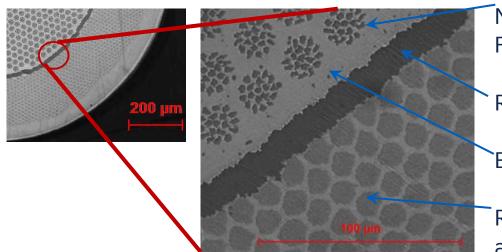
- Magnet design considerations
 - Nb3Sn inner magnet, 9 T
 - NbTi outer magnet, 7T
- Nb3Sn conductor design
 - Evaluated 4 vendors
 - Working with Furukawa closely on the design

• Nb3Sn superconducting joint development

- Unreacted wire joint
- Reacted wire joint

• Electromagnetic design of a 16-T MRI magnet

- Bore size
- Homogeneity
- Fringe field


Nb3Sn Superconducting Joint Development

- Joint style investigated so far
 - Pigtail, disc, inline
- Connecting configuration
 - Etched wire filaments embedded in a powder matrix
 - Scarf surfaces with powders in between
 - Laser drilled holes filled with powders
- Removal of reaction barriers
 - Initial etching to remove sheathing and/or copper alloy shell (nitric acid)
 - Second etching to remove Ta reaction barrier (HF blend)
 - Optional 3rd etching to remove some internal matrix (nitric acid)

Examples of joints

AL ELECTRIC

Joint DO Development Center

Niobium (Nb) Filaments

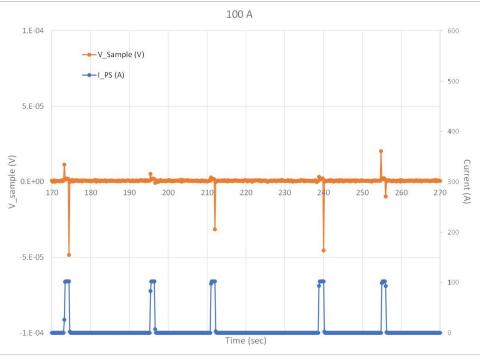
Reaction Barrier

Bronze Matrix

Reinforcement outer alloy filaments

• Unreacted wire joints

- Superconducting up to 180A
- Needs further improvement
- Reacted wire joints
 - Very limited success so far

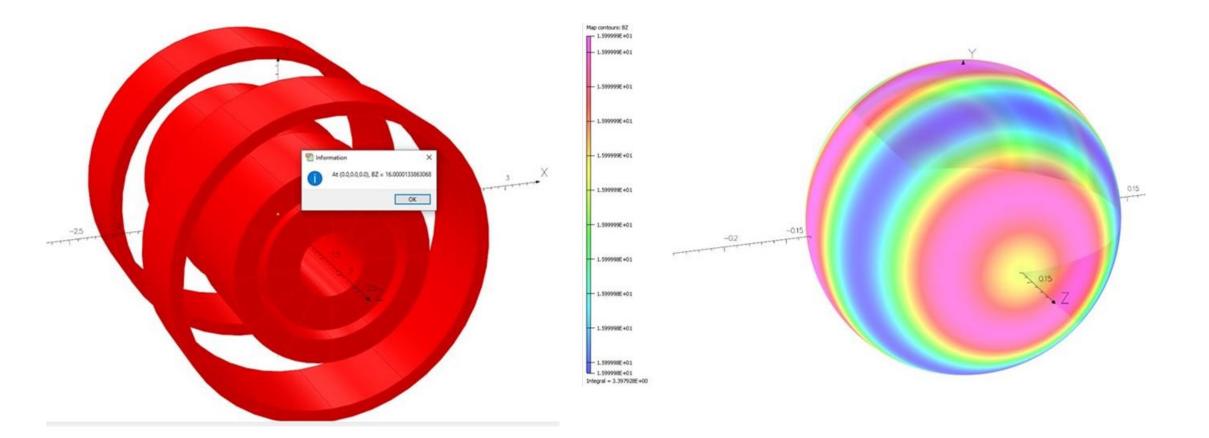


GENERAL

Cylindrical pigtail joint

Bolted loaded disk joint

vancing Medical Care through Discovery in the Physical Sc



- Magnet design considerations
 - Nb3Sn inner magnet, 9 T
 - NbTi outer magnet, 7T
- Nb3Sn conductor design
 - Evaluated 4 vendors
 - Working with Furukawa closely on the design
- Nb3Sn superconducting joint development
 - Unreacted wire joint
 - Reacted wire joint

• Electromagnetic design of a 16-T MRI magnet

- Bore size
- Homogeneity
- Fringe field

Electromagnetic Design of a 16-T MRI Magnet

Coil configuration of a 16-T MRI Magnet

Field plot at 26 dsv showing 0.6 ppm homogeneity

EM Design

Coil

Nb3Sn solenoid
NbTi solenoid
NbTi Large coil
NbTi Bucking coil

Main Parameters

Param	<u>Unit</u>	<u>Value</u>
Homo	ppm	0.60
DSV	cm	26
R_5G	m	8
Z_5G	m	10
Induct	Н	3.71E+05
Energy	MJ	668
Lth_wire	km	7,732
Wt_wire	kg	98,348

Coil Dimension

coil	rc(cm)	zc (cm)	dr (cm)	dz (cm)	Bp (T)
1	56.595	85.658	39.990	171.316	16.05
2	95.279	18.407	18.558	36.813	6.86
3	100.202	111.922	28.060	126.520	7.91
4	177.611	125.553	15.440	106.273	6.29

coil	Prad (psi)	Pax (psi)	F	rad (lb/in)	Fax	(lb)	
1	11,084	-4,632		747,597		-10,208,845	
2	2,251	-787		32,621		-1,355,570	
3	982	-11,460		48,897	-3	-31,379,532	
4	1,974	4,000		82,591	1	10,683,651	
coil	Pr (MPa)	Pz (MPa)	Fr	(kg/m)	Fz (kg)		
1	76	-32		3,362,561	-	4,634,816	
2	16	-5		583,068		-615,429	
3	7	-79		873,986 -		4,246,308	
4	14	28		1,476,233		4,850,378	
coil	T (MN/m)	F (MN)		σ (Mpa)		ε(%)	
1	43	8 74		108		0.12	
2	15	5		80		0.06	
3	7	9		24		0.02	
4	24	20		157		0.12	

Summary

- Carefully selected reinforced/strong Nb3Sn wire for the design
- Investigated a few configurations of Nb3Sn joints with some success
- Electromagnetic design showed magnet manufacturable

Thank you for your attention