

G MAYO CLINIC

Disclosures

- Research support
 - NIH (EB017095, EB028590, EB028591)
 - Mayo Clinic Discovery Translation Grant
 - Siemens Healthcare
- Board membership
 - ISCT, Vice-president
- Use of off-label medical devices
 - The research photon-counting-detector CT scanners described in this work are not commercially available

MAYO CLINIC

X-ray detectors and medical CT

Typical Parameters for High End Medical CT Systems	
X-ray Spectra	70 kV to 150 kV
X-ray On Time	~0.2 s up to 100 s
Typical Flux	~ 10 ⁸ photons / (s·mm²)
Peak Flux	> 10 ⁹ photons / (s·mm²)
Detector Type	Indirect conversion (scintillating EIDs)
Active Area	up to 32 cm x 100 cm
Pixel Pitch	~1 mm x 1 mm
Frame Rate	Up to 7x10 ³ fps
Dynamic Range	18 bit to 22 bit
Signal Stability	~0.1%
Centrifugal Force	Up to 70 g

Challenges for PCDs in medical CT

- Pulse pile-up
 - Reduces dose efficiency and signal accuracy: pixels can't be too large
- ▶ ① k-escape, charge sharing, and Swank noise
 - Reduces spectral resolution: pixels can't be too small
- Advanced ASIC designs
 - Fast pulse shaping < 10-20 ns FWHM
 - Two or more counters per pixel
- Bandwidth
 - Pixel pitch \sim 0.275 mm x 0.322 mm with 2 counters per pixel
 - > 22 times more data to move
- Large scale manufacturing
 - High purity, high yield, long term stability, affordable cost

MAYO CLINIC

Clinical benefit

- Increased conspicuity of subtle iodine-enhancing structures or pathology
- Increased iodine CNR could be traded for dose reduction
 - Radiation dose
 - Beneficial for children and patients with chronic disease
 - Iodinated contrast material dose
 - Beneficial for patients with decreased kidney function
- Increased iodine CNR at high kV
 - Obese patients
 - Patients with metal implants

Temporal bone: Improved resolution and lower noise/dose

Simultaneous High Resolution & Multi-Energy

- Higher spatial resolution better delineates coronary artery and stent
- Multi-energy enables material decomposition, e.g., iodine map

21

MAYO CLINIC

Clinical benefit

125-micron resolution for fine anatomic features

PLUS

- data perfectly registered temporally and spatially
- ability to diagnose gout or bone marrow edema, perform bone removal, or any other spectral application

Use of multiple k-edge contrast agents

- Multi-contrast imaging
 - Simultaneous imaging of multiple contrast agents
 - *I,* Gd, Bi
 - <u>Might</u> enable novel molecular imaging applications
 - Au nanoparticles
- Challenges
 - Noise amplification
 - Lack of FDA-cleared high Z contrast agents

<image><image><section-header><section-header>The series of the serie

27

First cardiac PCD-CT study (April 30, 2021)

29

Clinical impact of photon counting detector CT

- Photon counting detectors (PCDs) record individual photons and their associated energy
- Offers multiple benefits over conventional CT with energy integrating detectors (EIDs)

31

MAYO CLINIC

Acknowledgements

- J. Fletcher, MD
- S. Leng, PhD
- L. Yu, PhDK. Rajendran, PhD
- S. Tao, PhD
- W. Zhou, PhD
- H. Gong, PhD
- D. Bartlett, MD
- P. Mohammadinejad , MD
- Y. Lee, PhD
- J. Weaver, BA
- J. Thorne, BS
- B. McCollough, BS
- J. Marsh, BS

- T. Drees
- B. Andrist
- N. Weber
- H. Kasten
- K. Nunez, MS
- A. Inoue, MD
- F. Diehn, MD
- T. Johnson, MD
- K. Glazebrook, MD
- F. Baffour, MD

- A. Henning, PhD
- S. Kappler, PhD
- A. Halaweish, PhD
- S. Ulzheimer, PhD
- B. Schmidt, PhD
- T. Flohr, PhD
- K. Stierstorfer, PhD
- M. Baer-Beck, PhD
- E. Shanblatt, PhD
- A. Halweish, PhD
- Thank you!