

Advancing Medical Care through Discovery in the Physical Sciences DOE/NIH Workshop, July 12-13, 2021

Crystals, Cameras and Detectors: State-of-the-Art Challenges and Emerging Technologies

Simon R. Cherry Departments of Biomedical Engineering and Radiology, UC Davis

Clinical PET/CT, PET/MR, SPECT/CT

Total-Body and Long Axial FOV PET Scanners

Large increases in geometric collection efficiency lead to unprecedented image quality

Enables very fast imaging or low dose imaging

Need: Cost reduction

UIH uEXPLORER (194 cm)

PennPET EXPLORER (140 cm)

Siemens Vision Quadra (106 cm)

Latest generation PET scanners are complex instruments!

uEXPLORER # of crystals: 564,480 # of photodetectors: 53,760 # of electronic channels: 53,760 Mass: ~11,000 kg CMS EM Calorimeter at CERN # of crystals: 75,848 # of photodetectors: 137,048 # of electronic channels: 75,848 Mass: ~100,000 kg

Next Generation Brain PET

neuroEXPLORER PI: Richard Carson, Yale

HSTR PI: Ciprian Catana, MGH

SAVANT PI: Georges El Fakhri, MGH

Efforts are focusing on some combination of improved:

spatial resolution (with depth encoding), sensitivity, time of flight performance **Needs: Detectors that can deliver on all four at a reasonable cost**

SPECT Imaging

Brain SPECT

Zeratkaar et al, IEEE Trans Med Imag 39: 4209 (2020)

Preclinical SPECT/MRI

CZT-based SPECT systems (e.g. VERITON, Spectrum Dynamics)

Desmonts et al, EJNMMI Physics 7: 18 (2020)

Lai et al, Phys Med Biol 63: 045008 (2018)

Proton and Ion Beam Range Verification

Coincidence (PET) Imaging

Mohammadi et al, *Phys Med Biol* 64; 145014 (2019) Shao et al, *Phys Med Biol* 59; 3373 (2014) Nishio et al, *Int J Radiat Oncol Biol Phys* 76; 277 (2010)

Prompt Gamma Imaging (Collimated gamma camera or Compton camera)

Richter et al, *Radiother Oncol* 118; 232 (2016) Draeger et al, *Phys Med Biol* 63; 035019 (2018)

Radiation Therapy tomorrow?

- Deliver radiation internally!
 - Emergence of effective theranostic agents
 - Treat what you can't see
 - Eliminates motion and misregistration issue
- Challenges and opportunities:
 - Dosimetry and treatment planning
 - Imaging before treatment
 - Real-time imaging during treatment
 - Modulate dose given based on imaging?
 - Dose verification
 - Imaging after treatment

Courtesy Michael Zalutsky, Duke University

Opportunity: Optimal systems for whole-body Lu-177 imaging: Gamma emissions at 208 keV (11%) and 113 keV (6.6%)

Radiation Detectors

Time-of-Flight (TOF) PET

Adapted from Vandenberghe et al, EJNMMI Physics (2016) 3:3

Improving Timing Resolution

	Center emis-			Weighted	
Material	sions (nm)	Crystal size (mm ³)	SiPM used	PDE (%) ^a	CTR (ps)
LSO:Ce:0.2%Ca	420	$2 \times 2 \times 3$	NUV-HD 40 μ m	59 ± 3	60 ± 3
LSO:Ce:0.2%Ca	420	$2 \times 2 \times 20$	NUV-HD 40 $\mu { m m}$	59 ± 3	98 ± 3
LSO:Ce:0.4%Ca	420	$2 \times 2 \times 3$	NUV-HD 40 μm	59 ± 3	58 ± 3
LYSO:Ce	420	$2 \times 2 \times 3$	NUV-HD 40 $\mu { m m}$	59 ± 3	69 ± 3
BGO	480	$2 \times 2 \times 3$	NUV-HD 40 $\mu { m m}$	47 ± 3	158 ± 3
BGO	480	$2 \times 2 \times 20$	NUV-HD 40 $\mu { m m}$	47 ± 3	277 ± 3
BaF ₂	195/220 (fast)	$2 \times 2 \times 3$	VUV-HD 40 μm	$\sim 22 \pm 5^{b}$	51 ± 3
			Gundacker et al, Phys Med Biol 65; 025001 (2020)		

How to get to 20-30 ps?

- Incrementally through improvements in scintillators, light collection, photodetectors, electronics
- New approaches for signal generation, conversion and/or detection

New Scintillators: TICI(Be,I)

Exceptional stopping power and decay time

Photonic Structures to Improve Light Collection

Singh et al, IEEE Trans Nucl Sci 65; 1059 (2018)

Photon Trapping SiPM Architectures

Control photodiode

Photon trapping photodiode

Bartolo-Perez et al, Optics Express 29: 19024 (2021)

3-D Silicon Photomultipliers

Pratte et al, Sensors 21; 598 (2021)

Integrated CMOS electronics

SHERBROOKE

S

Vertical integration retains high fill factor for photosensitive area

Realize timing performance of individual SPADs (<10 ps SPTR?)

High-Frequency Amplifiers

Cates et al, *Phys Med Biol* 63; 185022 (2018) Gundacker et al, *Phys Med Biol* 64; 055012 (2019)

Different Luminescence Mechanisms?

Scintillation

- Bright, but relatively slow in terms of initial photon flux (photons/ps)

Cerenkov

- Fast, prompt emission, but relatively few photons (~10-20)

• Other

- Hot intraband luminescence
- Quantum confinement in nanoscintillators

Lecoq, IEEE Trans Rad Plasma Med Sci 1; 473 (2017)

MCP-PMTs with Integrated Cerenkov Radiator and Deep Learning Timing Estimation

Ryosuke Ota and Tomohide Omura HAMA

Reconstruction Free Imaging of Positron Emitters

Ota et al, arXiv 21.05.058052021 (2021)

Hybrid Radiation Detectors

Cerenkov-semiconductor (TIBr)

Metamaterials Nanocrystals-scintillator

Kwon et al, *Phys Med Biol* 61; L38 (2016) Kwon et al, IEEE MIC (2020) Ariño-Estrada et al, *Phys Med Biol* 63; 04LT01 (2018)

Turtos et al, *Phys Med Biol* 64; 185018 (2019)

Summary

There is lots going on and many opportunities!

- New cameras are being developed:
 - Long axial FOV / total-body PET scanners
 - High performance brain PET/SPECT imagers
 - Preclinical systems, proton range verification etc....
 - Opportunity: Systems optimized for theranostics (Lu-177)
- Timing is a major emphasis in PET development
 - At ~30 psecs reconstructionless PET becomes possible
- Explore different luminescence mechanisms
- New SiPM architectures (3D digital, photon trapping structures)
- New detector materials (<cost?) and hybrid radiation detectors
- Integrating deep learning into detector signal processing

