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SDE tower for QED
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• They form an infinite set of coupled integral equation!   
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Need for a truncation scheme
� First, let us examine the SDE for the fermion in isolation
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� This equation is more complicated than it seems. 

• The full electron propagator (containing all order corrections) can be written as 

• Notice that at tree level and

• The pole of the propagator defines the mass of the particle. Dynamical mass

A and B are unknown functions



� To sum up, we have: 
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à 2 unknowns functions, A and B from full electron propagator, which

are coupled 1 (photon) + 12 (form factors of the vertex) unknowns functions: 
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� To understand the basic principles of the dynamical mass generation, it 
is not necessary to solve this intricate coupled system.

� Let's make some approximations to get the general idea of the problem.

� We will approximate the photon propagator and the vertex by their tree
level values,  i.e. 

� Then, only the electron is treated nonperturbatively. Diagrammatically
we have
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Rainbow approximation
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QED in the rainbow approximation

In Euclidean space, we have

The angular integral  for the Dirac-vector component vanishes à A(p2)=1  



� The angular part for B(p2) is simple

� The integral equation can be converted in a differential equation + 
boundary conditions.  

Measure in 4D spherical coordinates

Angular integration:

For more details see:
M.R.Pennington, J. Phys. Conf. Ser. 18, 1-73 (2005)
E. S. Swanson,  AIP Conf. Proc. 1296, no.1, 75-121 (2010)
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� It is convenient to define  the fine structure constant

� Then,  we see that the nontrivial solution appears only when

� The electron dynamical mass will be generated only when the constant
will be greater than one.

� ...or we can interpret it as,  we are consider that the electron is
massless (no lagrangian mass), but it  may develop dynamical mass if it 
will be immersed in the field of a heavy nucleus with charge Z > 144. 



Full inverse
electron propagator

Full vertex

Ward-Takashashi Identity (WTI)
• The Ward-Takahashi identity (WTIs) is one of the most important consequences

of gauge invariance in QED – valid to all orders. It states
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k p



� Clearly,  this relation is satisfied at tree level

� But when we combine the vertex at tree level and the propagador dressed
(as we have done in the rainbow approximation) the WTIs is not satisfied

q = p− k

µ

k p

Γµ(p, k) =

We have to use more sophisticated Ansatz for the electron-photon!  

The rainbow approximation violates gauge invariance.
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� The result depends on the gauge (𝜉-dependence)

Consequences

• With more sophisticated Ansatz which respect
the WTI, it is possible to correct this behavior! 

C.D. Curtis and M.R. Pennington, Phys. Rev. D46 2663 (1992).
A. Kizilersu and M. R. Pennington, Phys. Rev. D79, 125020 (2009)



Transversality of photon 
vaccum polarization

• Gauge invariance also imposes the 
transversality of the vaccum polarization, i.e.

• We can show that full vaccum polarization  is transverse using the WTI
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• The vaccum polarization can be written as 



Photon polarization
is transverse to all orders!

µ ν

q q
k + q

k
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Similar property will hold
for the gluon polarization!

• Contracting with the momenta of the photon



What are the SDEs for QCD?



• Quark SDE  or gap equation

• Gluon SDE

Two -point sector

• Ghost SDE
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• Ghost-gluon vertex SDE 

• Three-gluon vertex SDE 
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• Quark-gluon vertex SDE 
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Difficulties with SDEs

• The need for truncations is evident  

ü No obvious expansion parameter, so, no formal way of estimating the size 
of the omitted terms. However, it seems that the “projection” of higher 
Green’s functions on the lower ones is “small”.

ü Casual truncation interferes with the symmetries encoded in the form of 
the SDEs

• Self-consistent truncation scheme must be used.

is the gluon self-energy
It is transverse



The complete  SDE  for  the gluon
propagator

¥ Retaining only (a) and (b) is not correct even at one loop

¥ Adding (c) is not sufficient for a full analysis à beyond one loop



Slavnov Taylor identities

• The main problem is that fully dressed vertices satisfy  STIs instead of WI. 

• All diagrams must conspire to maintain intact crucial properties of the theory. 

• If one truncates “naively”, i.e., just by dropping diagrams without  a guiding 
principle  à one will violate the fundamental transversality property.

• To avoid that à use SDE in the  Pinch Technique –
Background  field method  (PT-BFM) formalism



Background field method: Crash course

• The BFM is a special quantization scheme: Split the gauge field

à background field;                 à quantum (fluctuating)  field; 

• In the generating functional integrate only over  

• The gauge-fixed             is invariant under the transformations

• Proliferation of vertices and propagators. 

B. S. Witt, Phys. Rev. 162 (1967) 195—1239
G. ’t Hooft, In *Karpacz 1975, Proceedings, Acta Universitatis Wratislaviensis No.368, 1976, 345-369
L. F. Abbott, Nucl. Phys. B185 (1981) 189 
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Simplifies the WTIs satisfied by these
Green’s functions



New Green’s functions
• Three types of gluon propagators: 

• Relation between gluon propagators

• New vertices:

Auxiliary function
P. A. Grassi, T. Hurth and M. Steinhauser, Annals Phys. 288 , 197 (2001) 
D. Binosi and J. Papavassiliou., Phys. Rev. D66, 025024 (2002) 



Special Properties

• QED-like (ghost free) Ward identities

instead of the standard 

Hµ⌫(q, r, p) :  Ghost-gluon kernel

D(q2) = F (q2)/q2 : Ghost propagator 

F (q2) : Ghost dressing function 



From Takahashi to Ward identities

� Takahashi Identities

� Taylor expansion around 𝑞 = 0, in the absence of poles ~ !
"!

in the vertex:

� We obtain

23

QED :

Ward identity



From Takahashi to the Ward identities

Scalar QED QED QCD (in the BFM)
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Warning: Only valid in the absence of massless poles



Pinch Technique – Background Field Method

• Transversality is enforced separately for gluon and ghost loops, and order 
by order in the “dressed-loop” expansion!

A.C. A. and J.Papavassiliou, JHEP 0612, 012 (2006)
D. Binosi and J. Papavassiliou, Phys.Rev. D 77, 061702 (2008); JHEP 0811:063,2008.

�(q) = e�(q)[1 +G(q)]

qµe�µ↵�(q, r, p) = i��1
↵�(r)� i��1

↵�(p)

qµe�µ(q, r,�p) = D�1(p)�D�1(r)

qµe�mnrs
µ↵�� = fmsefern�↵�� + fmnefesr���↵ + fmrefens��↵�



Transversality of the first block

• Let us check the transversality of the first
group of diagrams

• Considering first the diagram (a1) contracting
it with the external background gluon
momentum  

• Now using the conventional Feynman rule for the three-gluon vertex at tree-level,  we
obtain

• Performing the contraction, we find

shift  k+q à k



• Then, we arrive at

• Now, contracting the diagram (a2) with , we easily find

• Therefore, the transversality of the first block of diagrams shown in the figure is proved, 

BFM Feynman rule



• In order to verify the transversality of the other two groups, one can follow the same
procedure, using the appropriate WTIs

ü To verify the transversality of the
last group (blue), one needs to
use the first and last WIs.

ü To prove the transversality of second block
(yellow) use the second WI.



Converting the PT- BFM propagator

A.C. A., D. Binosi and J. Papavassiliou, JHEP 0911, 066 (2009)
A. C. A., D. Binosi, J. Papavassiliou and J. Rodriguez-Quintero, Phys. Rev. D 80, 085018 (2009) 

Auxiliary function

In Landau gauge the ghost dressing 
function satisfies



Short Summary:

üWe can truncate the SDE for the PT-BFM  propagator without violating the
transversality of the gluon self-energy, as long as we consider all diagrams within the
chosen blocks.

üNote, however, that this fact does not imply that the contributions from the neglected
groups are necessarily small.

üNonetheless, being able to truncate the SDE while preserving, by construction, the
symmetry of the theory is a great achievement! 



Emergent  mass scale in the gauge sector

• Saturation of the gluon 
propagator can be 
explained by the
generation of a gluon 
mass scale.

• Natural parametrization: 

��1(0) = m2(0)

31

Lattice data from: 
I. L. Bogolubsky, et al , PoS LAT2007, 290 (2007). 

��1(q2) = q2J(q2) +m2(q2)

Kinetic term running mass

with

J. M. Cornwall, Phys. Rev. D26, 1453 (1982).
ACA., D. Binosi and J. Papavassiliou., Phys.Rev. D78 (2008) 025010.

• A  nonperturbative mechanism is needed.



Gluon mass generation

• The dynamical gluon mass should be generated without
modifying the QCD lagrangian

where the gluonic field strength tensor

• A  mass term (m2Aµ
2 ) is forbidden by gauge invariance.

• The mechanism should not generate quadratic divergences à to
renormalize them away you must add a mass term.

LQCD



No mass without poles

ACA and J. Papavassiliou Phys. Rev. D 81, 034003 (2010)

PT- BFM
Ward identites

Seagull 
cancellation

!𝚫!𝟏 𝟎 = 𝟎

• Seagull cancellation
(valid in dimensional regularization)

e��1(q2) = q2 + i
h
e⇧(1)(q2) + e⇧(2)(q2) + e⇧(3)(q2)

i



Seagull identity the in Scalar QED

34ACA, D. Binosi, C. T. Figueiredo. and J. Papavassiliou, Phys. Rev. D94, no. 4, 045002 (2016).

• Taking the limit q à 0,  we
have that 𝑔#$ component  

• Use the WIs

• Thus,  using that
we find

seagull



� Following exactly the same reasoning as in the scalar QED case, we have

Seagull identity in the PT-BFM

• Use the WIs

• Thus, we have that

• Using

• We find

seagull



Following the same steps,  we can prove that

e��1(q2) = q2 + i
h
e⇧(1)(q2) + e⇧(2)(q2) + e⇧(3)(q2)

i
e��1(0) = 0



Answer:  Introduce massless poles 
to trigger the Schwinger Mechanism

The question is:   How can one  evade 
the seagull cancellation and get  a 
gluon mass?



Schwinger Mechanism in QCD 
• Propagator in the Landau gauge:

• Vaccum polarization: 

J. S. Schwinger, Phys. Rev.125, 397 (1962); 
Phys.Rev.128, 2425 (1962).

��1(q2) = q2[1 +⇧(q2)]

⇧µ⌫(q) = Pµ⌫(q)q
2⇧(q2)

�µ⌫ = �i
⇥
Pµ⌫(q)�(q2)

⇤
Pµ⌫(q) = gµ⌫ � qµq⌫

q2

� If the vaccum polarization has a pole in q2 = 0 with positive residue m2, i.e. 

� Then

��1(q2) = q2 +m2 ��1(0) = m2

Dynamical gluon mass generation requires the existence of 
vertices containing poles of nonpertubative origin.



Gluon mass generation
in a nutshell

• The gauge invariant generation of a gluon mass proceeds through the 
implementation of the  Schwinger mechanism.

• It requires the existence of a very special type of
nonperturbative vertices:

ü Contain massless poles of nonpertubative originà evades the 
seagull cancellation à make possible that D-1 (0) ¹ 0;

ü They guarantee that the  STIs remain intact;

ü They are completely longitudinally coupled, act as a composite 
Nambu-Goldstone bosons.

R. Jackiw and K. Johnson, Phys. Rev. D 8, 2386 (1973)
J. M. Cornwall, Phys. Rev. D26, 1453 (1982).
E. Eichten and F. Feinberg, Phys. Rev. D 10, 3254 (1974)



Vertices with massless poles
� To evade the previous result, one must relax one of the underlying assumptions 

� In particular, the derivation of the WI hinges on the absence of poles 

� Therefore, let us introduce poles in (full three gluon vertex)

� Explicit implementation of the Schwinger mechanism in Yang-Mills 
theories
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• Pole part is longitudinal: Drops out when embedded in a S-matrix
element and also in transversely projected
Green’s functions

• The abelianized STI must
be realized in part by
means of  a longitudinally
coupled pole term

Full Abelianized STI
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Ward identity in the presence of poles 

eC↵�(0, r,�r) = 0

qµe�np
µ↵�(0, r,�r) + eC↵�(0, r,�r) + qµ

⇢
@

@qµ
eC↵�(q, r, p)

�

q=0

= �iqµ
@��1

↵�(r)

@rµ

e�µ↵�(q, r, p) = e�np
µ↵�(q, r, p) +

qµ
q2

eC↵�(q, r, p)

eC↵�(q, r, p) = eCgl(q, r, p)g↵� + · · ·

Same  WTI identity !



Evading the seagull identity

+

Triggers seagull identity exactly as before
Vanishes identically

pole contribution

e��1(0) = lim
q!0

+

+

Effective gluon mass !

ACA, D.Binosi, C.T.Figueiredo and J.Papavassiliou, Phys. Rev. D 94, no. 4, 045002 (2016)



Dynamical equation for massless pole

q ! 0

Bethe-Salpeter equation 
for the full vertex

Substitute:
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Homogeneous integral equation  coupled with 
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Relation with the gluon mass

��1(q2) = q2J(q2) +m2(q2)

eC↵�(q, r, p) = m2(p2)P↵�(p)�m2(r2)P↵�(r)

eCgl(q, r, p) = m2(r2)�m2(p2) =)
q!0

eC 0
gl(r

2) =
dm2(r2)

dr2

m2(q2) = ��1(0) +

Z q2

0
dy eC 0

gl(y)

�µ⌫ = �i
⇥
Pµ⌫(q)�(q2)

⇤



47

Dynamical gluon mass

ACA, D. Binosi, C. T. Figueiredo., and J. Papavassiliou, Eur. Phys. J. C78, no. 3, 181 (2018).

m2(q2) = ��1(0) +

Z q2

0
dy eC 0

gl(y)

Including massless poles  
in the ghost-gluon vertex,   
one can see that the
impact in the gluon mass
is mild.

Power law behavior



Summary

� The fundamental issue of mass generation can be addressed in a 
self-consistent framework. 

� The quadratic divergences that plague the study of dynamical mass
generation can be shown to vanish by virtue of the seagull identity.

� Such identity, together with the WIs satisfied by the are responsible
for the vanishing !𝚫&𝟏 𝟎 = 𝟎 in the absence of the poles.

� Therefore, to obtain massive solutions for the gluon propagator, we
must require the three gluon vertex to contain longitudinally
coupled massless poles.

� These poles are responsible for generating a pole in the gluon
vacuum polarization, which triggers the Schwinger mechanism
allowing for a dynamical gluon mass.


