

Gluons in QCD

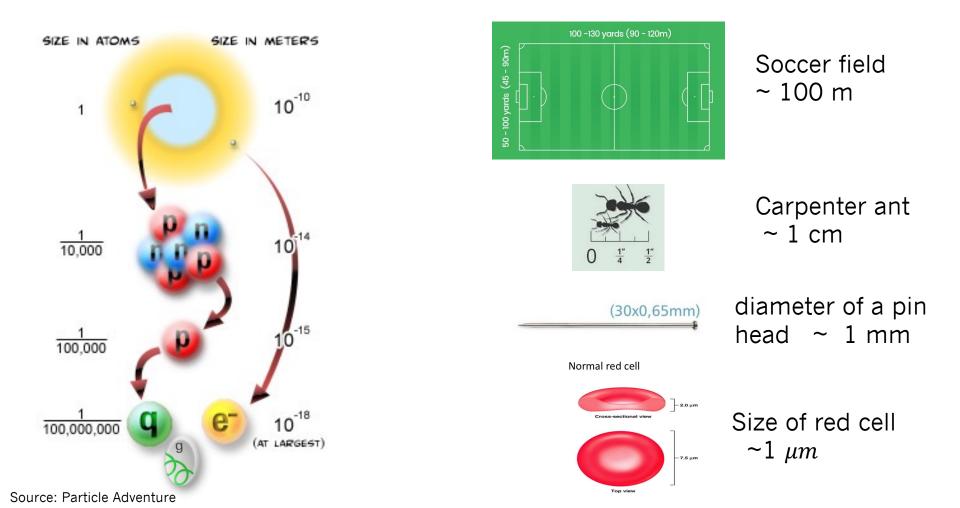
Arlene Cristina Aguilar University of Campinas, São Paulo - Brazil

Supported by:

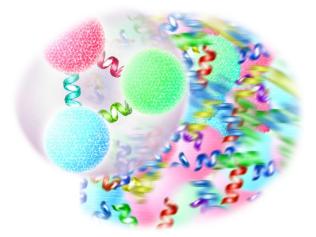
Hampton University Graduate Studies (HUGS) June, 8 2021

Setting the scale - The inner structure of the atom

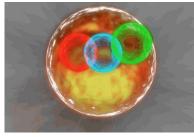
- The nuclei is 10.000 times smaller than the atom.
- Quarks, gluons, and electrons are 10.00 times smaller than the nuclei.



What do we know about Quantum Chromodynamícs QCD ?

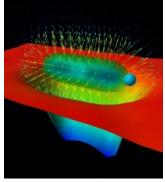


Quantum Chromodynamics - QCD

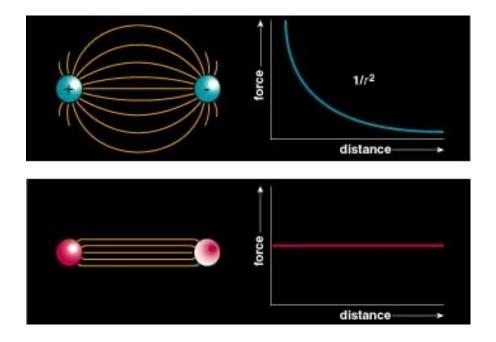


- QCD is the theory of the strong interaction, where the *quarks* and *gluons* are the fundamental degrees of freedom.
- Interactions are mediated by vector boson \rightarrow gluon spin 1
- Quarks have masses and gluons are massless perturbatively.
- QCD is a renormalizable theory, and its energy range of validity goes from zero up to the Planck scale.
- Just need one observable to set the scale: $\Lambda_{\rm QCD}\simeq 300\,{
 m MeV}$
- QCD is not an effective theory is the fundamental theory of strong interactions.

- One of its challenges is to understand, from first principles, how quarks and gluons combine to create the hadrons we find in the nature → mesons, barions, glueballs...
- In the QCD IR region (strong regime) we have phenomena such as confinement and chiral symmetry.
- Both phenomena play a major role in the formation of bound states.
- For the above reasons, it is mandatory to explore the strong regime of QCD.



• We all know that, when we try to pull apart two eletric charges, the force generated is proportional to $1/r^2$ (Coulomb force)



- However in QCD, when two color charges (quarks) are separated, the force generated between them is constant (creation of a flux tube).
- As the force between quarks does not decrease, this would require an infinite amount of energy to separate them $\rightarrow Confinement$



QED - Quantum <u>Electro</u>dynamics

served as a prototype to develop

OCD- Quantum <u>Chromo</u>dynamics

Electric charge Color charge

Quantum Electrodynamics (QED)

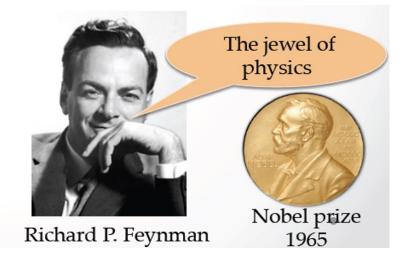
- Electrical charged particles interact through the exchanged of the photons.
- The strengh of the interaction is given by the fine structure

$$\alpha = 1/137$$

- Quantum field theory which describes the eletromagnetism is the Quantum Electrodynamics:QED
- The most precise theory of the science!

Sin-Itiro Tomonaga

Julian Schwinger

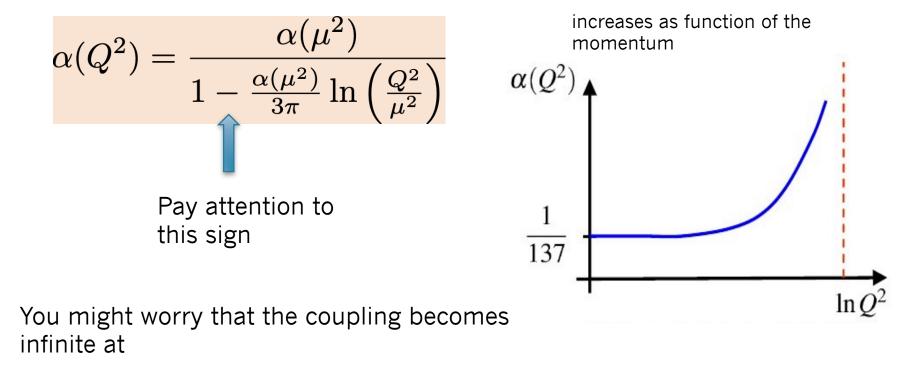


• The QED Lagrangian is given by

$$\mathcal{L}_{\text{QED}} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
field strength tensor
$$\mathcal{L}_{\text{QED}} = \begin{bmatrix} \longrightarrow & + & \mu & \cdots & \mu \\ electron & & photon & \mu \\ propagator & & propagator & electron-photon \\ vertex & vertex & vertex \end{bmatrix}$$

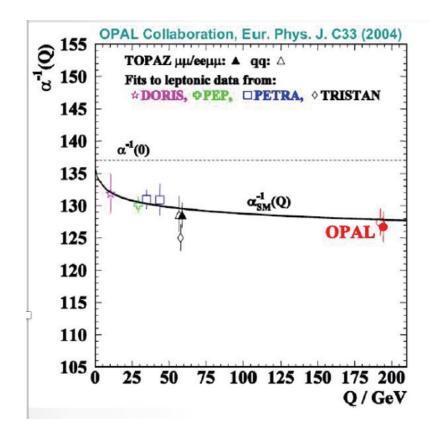
- In gauge theories nothing is constant.
- Couplings and masses acquire quantum corrections. Then, they will depend on the momenta scale.



$$\ln\left(\frac{Q^2}{\mu^2}\right) = \frac{3\pi}{1/137} \quad \Longrightarrow \quad Q \approx 10^{26} \,\mathrm{GeV}$$

but at this scale quantum gravity effects are expected to dominate since Planck scale is much below this energy (10^{19} GeV) - highly unlikely that QED would be valid at this regime.

Inverse of the QED running coupling



In QED the running coupling increases (as function of the momentum) very slowly

Atomic physics:
$$Q^2pprox 0$$

- $1/\alpha = 137.03599976(50)$
- High energy physics:

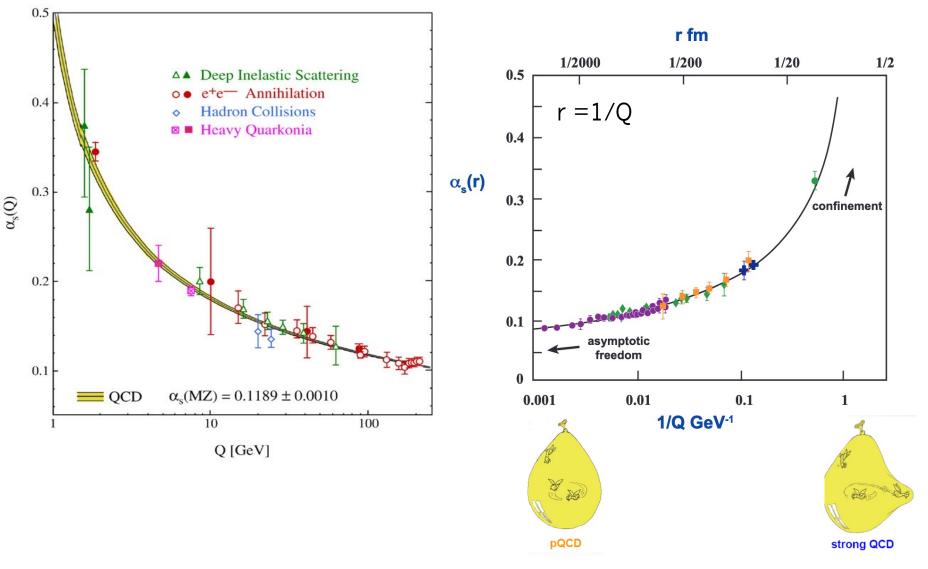
 $1/\alpha(193\,{
m GeV}) = 127.4\pm2.1$

QCD Lagrangían

The QCD dynamics are governed by the Lagrangian

Strong interaction: QCD

Decreases as function of the momentum



- Asymptotically free \rightarrow Perturbation theory is valid for large values of Q^2
- Essentially nonperturbative around Q² < 2 GeV (~1 fermi)

Comparison of the couplings

- Behavior of the QED and QCD the coupling constants depend on the distance (or momentum)
 r =1/Q
- In QED we have $Q^{2} \gg \mu^{2}$

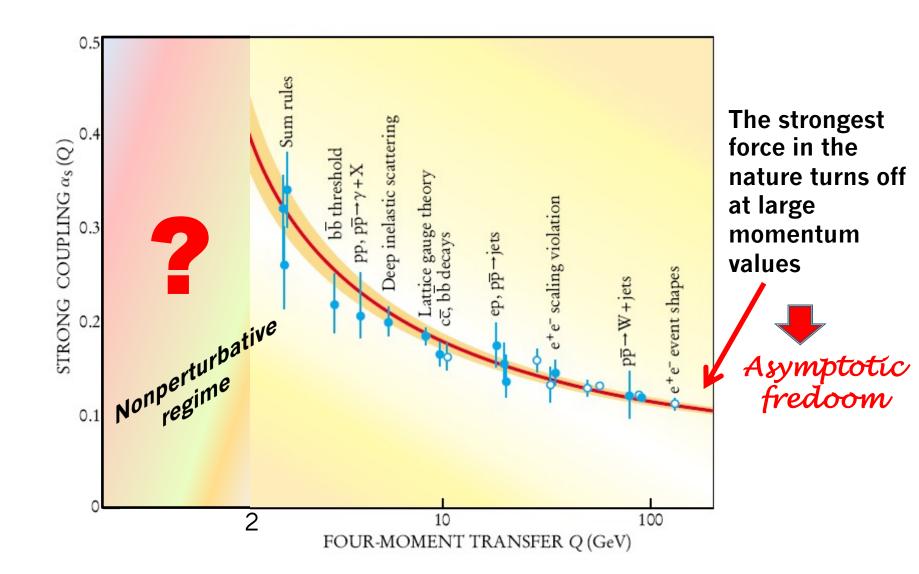
$$\alpha(Q^2) = \frac{\alpha(\mu^2)}{1 - \frac{\alpha(\mu^2)}{3\pi} \ln\left(\frac{Q^2}{\mu^2}\right)}$$

where
$$\alpha = \alpha(Q^2 \to 0) = e^2/4\pi = 1/137$$

The perturbative QCD coupling

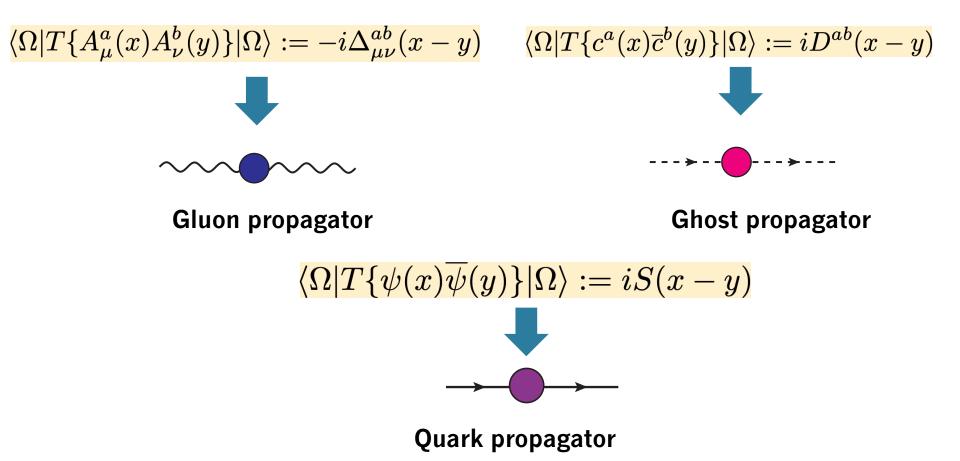
 $\alpha(Q^2)$ $\alpha(\mu^2) \simeq \frac{1}{137}$ small Q^2 (large r) large Q^2 (small r) $\alpha_s(Q^2)$ $\alpha_s \simeq 1$ $\alpha_s \simeq 0.2$ $r = 1 \mathrm{fm}$ $Q^2 = 100 \mathrm{GeV}^2$ large Q^2 (small r) small Q^2 (large r)

QCD coupling constant



Objects of interest: *Green's functions*

Full propagators defined as vaccum expectation value of the fields

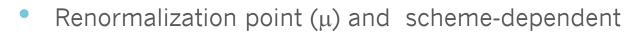


Off-shell QCD Green's functions

Green's functions:

Propagators and vertices

• Gauge-dependent



However

- They capture characteristic features of the underlying dynamics, both perturbative and non-perturbative.
- When appropriately combined they give rise to physical observables.

Crucial pieces for completing the QCD puzzle

The nonperturbative QCD problems

◎ The Green's functions are crucial for exploring the outstanding nonperturbative problems of QCD:

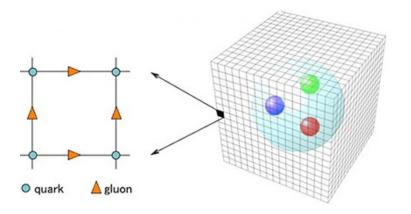
Bound states

Mass generation

Confinement

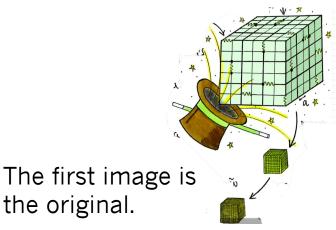
Nonpertubative tools

- Non-perturbative physics requires special tools.
- For QCD we have (first principles):
- Lattice simulations



- Space-time is discretized;
- The precision depends on the lattice spacing parameter and volume.

Suppose we wanted to study the Mona Lisa:



Source: Blog Coleção de Partículas - IFSC

The second image comes from putting the image on a lattice, you see that we lose details about small things (effects of the lattice space)

The third image comes from having a smaller canvas size so that we cannot see the big picture of the entire image (small volume)

If you're interested in only the broad features Mona Lisa's face , then the lattice isn't so bad. But, if you are a fine art critic...

Source: Quantum Diaries

Schwinger-Dyson equations - SDE

- Insightful computational framework.
- Equations of motion for off-shell Green's functions.
- It can be understood as the generalization of the Euler-Lagrange equation for a classical field $(\delta S/\delta\phi=0)$.
- Derived formally from the generating functional.
- Infinite system of coupled nonlinear integral equations.
- Inherently non-perturbative, but at the same time captures the perturbative behavior \rightarrow It accommodates the full range of physical momenta.

How to derive the SDE?

• Derived formally from the generating functional

$$\int \mathcal{D}\phi \; \frac{\delta}{\delta\phi(x)} e^{-S[\phi] + J \cdot \phi} = 0$$

which is equivalent to

$$\left(\frac{\delta S}{\delta \phi} \left[\frac{\delta}{\delta J(x)}\right] - J(x)\right) Z[J] = 0$$

- This equation is a compact form of equations of motion for the Green's functions.
- One has a tower of non-linear coupled integral equations.

Derivation using functional methods:

- C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33, 477-575 (1994)
- R. Alkofer and L. von Smekal, Phys. Rept. 353, 281 (2001)
- E. S. Swanson, AIP Conf. Proc. 1296, no.1, 75-121 (2010)
- M. Q. Huber, Phys. Rept. 879, 1-92 (2020)
- R.J. Rivers, Path Integral Methods in Quantum Field Theory, Cambridge University Press, New York (1990).

SDEs -Diagrammatic way

- Although the functional method is the formal way to derive the SDEs, it is quite abstract. Let us derive these equations in a diagrammatic way.
- First, let us do for QED which is easier than QCD.
- The full electron propagator is defined as

 $iS(x - x') := \langle \Omega | T\{\psi(x)\overline{\psi}(x')\} | \Omega \rangle$

and diagramatically represented by $iS(x'-x) = \underbrace{x'}{x'}$

• The full electron propagator is the sum all connected diagrams which start and end with a electron leg.

Based on:

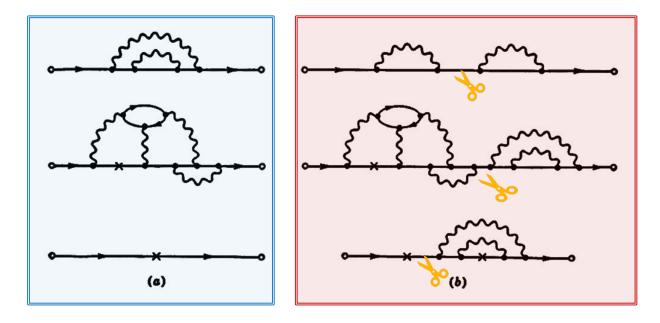
J.D.Bjorken and S.D.Drell, "Relativistic quantum fields", McGraw Hill Book Company, New York (1965). M.R.Pennington, J. Phys. Conf. Ser. 18, 1-73 (2005). The connected diagrams can be separated in two classes

Improper: CAN be split into two by removing a single line.

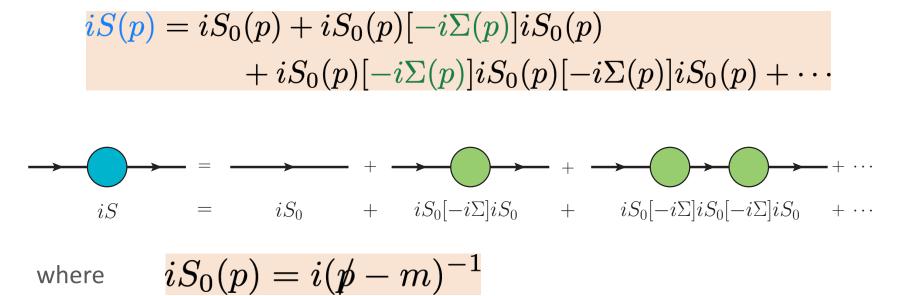
Proper or one particle irreducible (1PI): CANNOT be split into two by removing a single line.

Examples:

Connected Díagrams

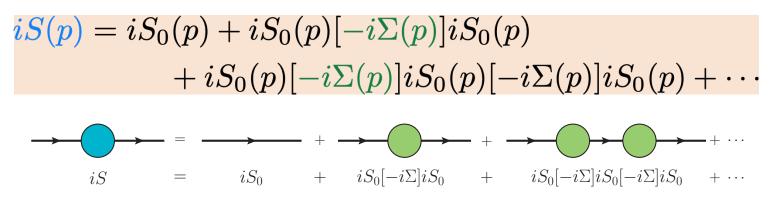


In the momentum space, we can write the full electron propagator, iS(p) as



is the electron propagator at tree level.

In addition, $i\Sigma(p)$ represents the sum of all proper diagrams of one-electron with momentum p (the external legs removed) - *Electron self-energy*

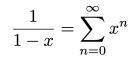


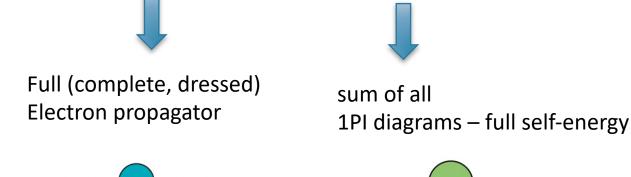
 $\frac{1}{\not p - m - \Sigma(p)}$

can be summed (Dyson sum), leading us to

S(p)

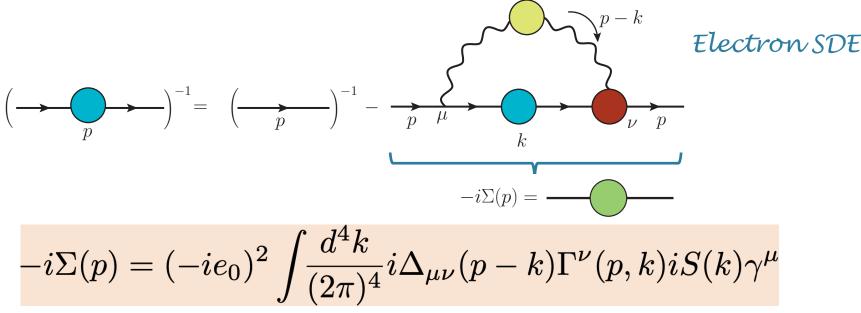
Remember that



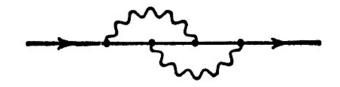


How do we calculate the electron full self-energy?

• The electron full self-energy is given by



• We would count twice the following diagram, if we have added another full vertex at μ .



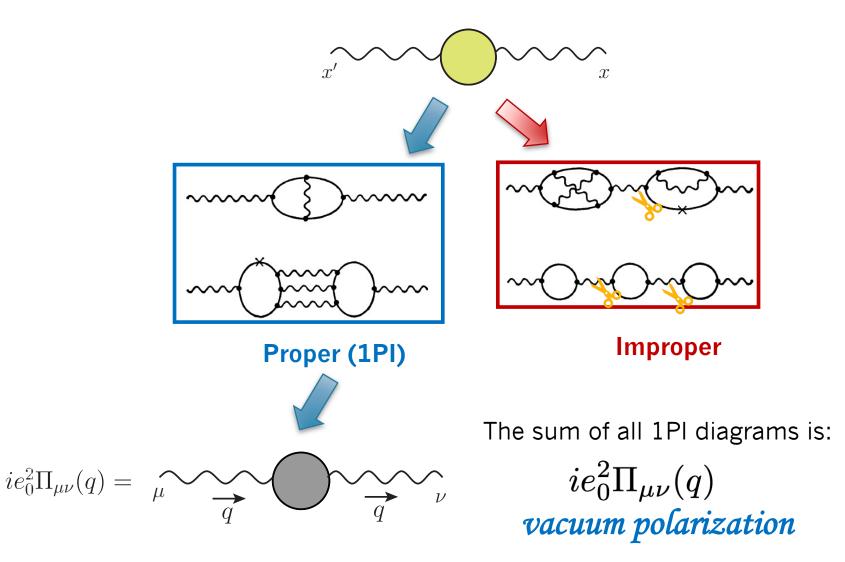
Photon SDE

 In a similar way, we can build the SDE for the photon propagator

$$i\Delta^{\mu\nu}(x-x') = \langle \Omega | T \{ A^{\mu}(x) A^{\nu}(x') \} | \Omega \rangle$$
$$i\Delta^{\mu\nu}(x-x') = \sum_{x'} \bigvee_{x'} \bigvee_{x'}$$

where the yellow circle represents the sum of all connected diagrams (proper and improper).

• Once again, we separate the proper from the improper ones.



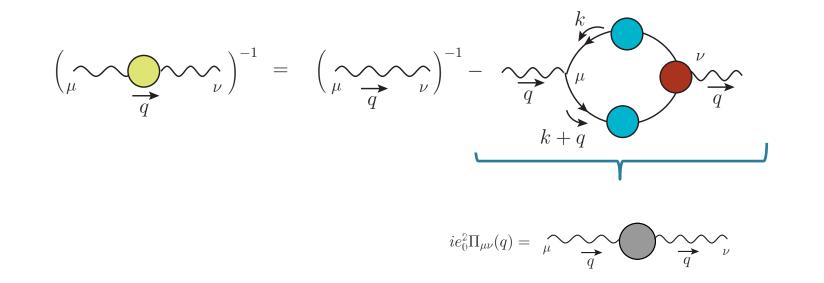
 In analogy to the electron case, we can express the full photon propagator as

$$\begin{split} i\Delta^{\mu\nu}(q) &= i\Delta_{0}^{\mu\nu}(q) + i\Delta_{0}^{\mu\lambda}(q)[ie_{0}^{2}\Pi_{\lambda\sigma}(q)]i\Delta_{0}^{\sigma\nu}(q) + \cdots \\ &= \frac{-ig^{\mu\nu}}{q^{2}} - \frac{-ie_{0}^{2}}{q^{2}}[i\Pi^{\mu\nu}(q)]\frac{(-i)}{q^{2}} - \frac{-ie_{0}^{4}}{q^{2}}[i\Pi^{\mu\lambda}(q)]\frac{(-i)}{q^{2}}[i\Pi_{\lambda}^{\nu}(q)]\frac{(-i)}{q^{2}} + \cdots \\ & & & \\ &$$

The vacuum polarization

• The full vacuum polarization is given by the following equation

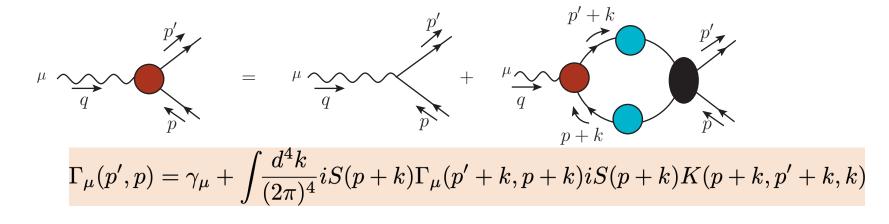
Photon SDE

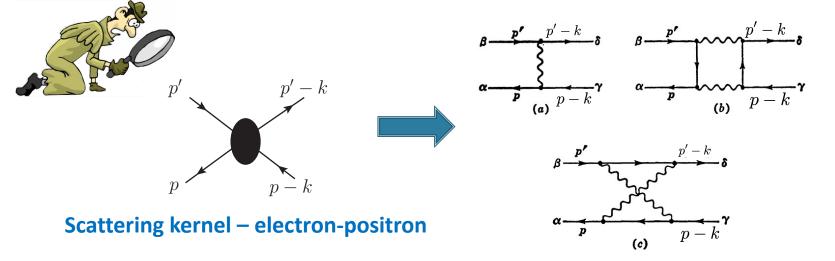


$$ie_0^2 \Pi_{\mu\nu}(q) = (-ie_0)^2 (-1) \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr} \left[\gamma_\mu iS(k)\Gamma_\nu(k,k+q)iS(k+q)\right]$$

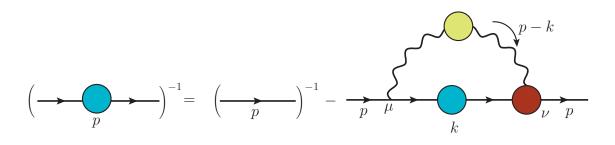
SDE for the electron-photon vertex

Similarly, one can obtain the SDE for the electron-photon vertex

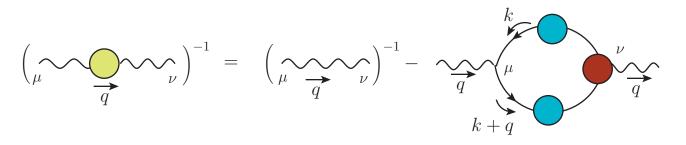




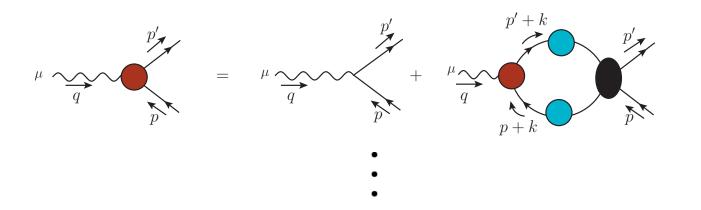
SDE tower for QED



Electron SDE



Photon SDE



Vertex SDE

They form an infinite set of coupled integral equation!

Need for a truncation scheme

First, let us examine the SDE for the fermion in isolation

$$\left(\underbrace{\longrightarrow}_{p} \right)^{-1} = \left(\underbrace{\longrightarrow}_{p} \right)^{-1} - \underbrace{\longrightarrow}_{p} \mu \underbrace{\longrightarrow}_{k} \mu p$$

$$S^{-1}(p) = (\not p - m) + ie_0^2 \int \frac{d^4k}{(2\pi)^4} \Delta_{\mu\nu}(q) \Gamma^{\nu}(p,k) S(k) \gamma^{\mu}$$

- This equation is more complicated than it seems.
- The full electron propagator (containing all order corrections) can be written as

$$S^{-1}(p) = A(p^2) p - B(p^2) \mathbb{I}$$

A and B are unknown functions

- Notice that at tree level $A(p^2) = 1$ and $B(p^2) = m$
- The pole of the propagator defines the mass of the particle.

$$S_0^{-1}(p) = (p - m)$$

$$\mathcal{M}(p) = \frac{B(p)}{A(p)}$$

Dynamical mass

• The full photon propagator, in general covariant gauges, can be written as

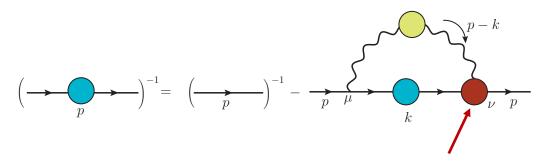
$$\Delta_{\mu\nu}(q) = \left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right]\Delta(q^2) + \xi \frac{q_{\mu}q_{\nu}}{q^4}$$

• Here we will focus in the Landau gauge $ightarrow \xi = 0$

 $\Delta(q^2) \implies$ is the full (all-order) photon propagator Unknown quantity determined from its own SDE

• At tree level, the photon propagator (in the Landau gauge) is given by

$$\Delta_0^{\mu\nu}(q) = \left[g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \right] \frac{1}{q^2} \quad \Longrightarrow \quad \Delta_0(q^2) = \frac{1}{q^2}$$

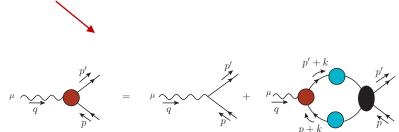


 The most general Lorentz structure of the full electron-photon is composed by 12 tensorial structures - [two momenta and a free Lorentz index]

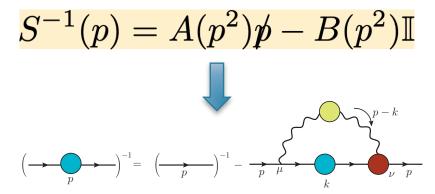
$$\begin{split} \Gamma_{\nu}(p,k) &= \gamma_{\nu}\Gamma_{1} + p_{\nu}\Gamma_{2} + k_{\nu}\Gamma_{3} + \gamma_{\nu}\not{p}\Gamma_{4} + \gamma_{\nu}\not{k}\Gamma_{5} + p_{\nu}\not{p}\Gamma_{6} \\ &+ p_{\nu}\not{k}\Gamma_{7} + k_{\nu}\not{p}\Gamma_{8} + k_{\nu}\not{k}\Gamma_{9} + \gamma_{\nu}\not{p}\not{k}\Gamma_{10} + p_{\nu}\not{p}\not{k}\Gamma_{11} + k_{\nu}\not{p}\not{k}\Gamma_{12} \end{split}$$

where the form factors are unknown functions $\Gamma_i := \Gamma_i(p, k, p - k)$ which satisfy their own SDE.

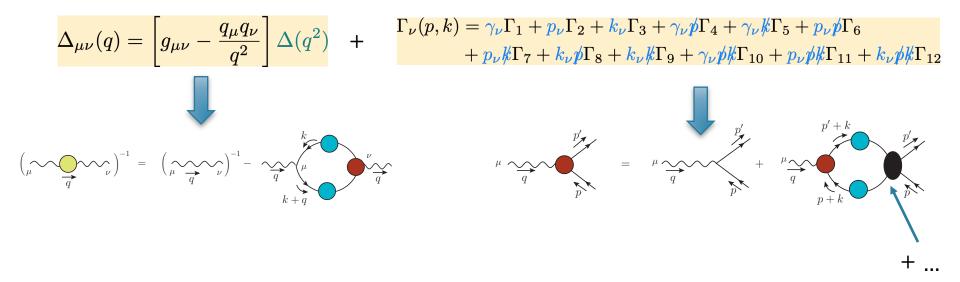
At tree level
$$\Rightarrow \ \Gamma_0^{\nu}(p,k) = \gamma^{\nu}$$



→ 2 unknowns functions, A and B from full electron propagator, which



are coupled 1 (photon) + 12 (form factors of the vertex) unknowns functions:



- To understand the basic principles of the dynamical mass generation, it is not necessary to solve this intricate coupled system.
- Let's make some approximations to get the general idea of the problem.
- We will approximate the photon propagator and the vertex by their tree level values, i.e.

$$\Delta(q^2) \to \frac{1}{q^2} \qquad \Gamma^{\nu}(p,k) \to \gamma^{\nu}$$

• Then, only the electron is treated nonperturbatively. Diagrammatically we have

Rainbow approximation