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Setting the scale - The inner structure of the atom

Source: Particle Adventure

• The nuclei is 10.000 times smaller than the atom.

• Quarks, gluons, and electrons are 10.00 times smaller than the nuclei.

Carpenter ant
~ 1 cm  

Soccer field
~ 100 m

diameter of a pin 
head ~  1 mm  

Size of red cell
~1 !"



What do we know
about

Quantum Chromodynamics QCD ? 



� QCD is the theory of the strong interaction, where
the quarks and gluons are the fundamental degrees of
freedom. 

� Interactions are mediated by vector boson à gluon spin 1

� Quarks have masses and gluons are massless perturbatively.  

� QCD is a renormalizable theory, and its energy range of
validity goes from zero up to the Planck scale. 

� Just need one observable to set the scale:

� QCD is not an effective theory is the fundamental theory
of strong interactions. 

Quantum Chromodynamics - QCD



� One of its challenges is  to understand, from first principles, 
how quarks and gluons combine  to create the hadrons we 
find in the nature à mesons, barions, glueballs…

� In the QCD IR region (strong regime)  we have  phenomena 
such as confinement and chiral symmetry.  

� Both phenomena play a major role in the formation of 
bound states. 

� For the above reasons, it is mandatory to explore the 
strong regime of QCD.



• We all know that,  when we try to pull apart two eletric charges, the
force generated is proportional to 1/r2 (Coulomb force)

• However in QCD,  when two color charges (quarks) are separated, the force
generated between them is constant (creation of a flux tube).

• As the force between quarks does not decrease, this would require an
infinite amount of energy to separate them à Confinement



QED - Quantum  Electrodynamics

served as a prototype to develop

QCD- Quantum Chromodynamics

Electric charge                  Color charge



Quantum Electrodynamics (QED)

� Electrical charged particles interact through the exchanged of the
photons. 

� The strengh of the interaction is given by the fine structure

� Quantum field theory which describes the eletromagnetism is the
Quantum Electrodynamics:QED

� The most precise theory of the science!



� The QED Lagrangian is given by

� In gauge theories nothing is constant.

� Couplings and masses acquire quantum corrections. Then, 
they will depend on the momenta scale. 

electron
propagator

photon
propagator electron–photon

vertex

field strength tensor



You might worry that the coupling becomes
infinite at

but at this scale quantum gravity effects are expected to dominate since
Planck scale is much below this energy (1019 GeV)  - highly unlikely that
QED would be valid at this regime. 

Pay attention to
this sign

increases as function of the
momentum



In QED  the running coupling increases
(as function of the momentum) very slowly

• Atomic physics:  

• High energy physics: 

Inverse of the QED running coupling



QCD Lagrangian

The QCD dynamics are governed by the Lagrangian

where
Gluon self-interaction
(Non-Abelian character)

Profound consequences!

Gluonic field strength tensor

gauge fixing termà contributes to the gluon propagator



� Asymptotically freeà Perturbation theory is valid for large values of Q2

� Essentially nonperturbative around Q2 < 2 GeV  ( ~ 1 fermi )

Strong interaction: QCD
Decreases as function of the momentum

r =1/Q



Comparison of the couplings
� Behavior of the QED and QCD the coupling constants depend on the distance (or

momentum) 

� In QED we have

� The perturbative QCD coupling

Q2»!!

where a = a(Q2 ® 0) = e2/4p = 1/137

r =1/Q

decreases for higher values of Q2 if nf < 16.

quark loop



QCD coupling constant

Asymptotic
fredoom

?

2

The strongest
force in the
nature turns off  
at large
momentum 
values



Objects of interest: 
Green’s functions

• Full propagators defined as vaccum expectation
value of the fields

Gluon propagator Ghost propagator

Quark propagator



QCD

Off-shell QCD Green’s functions

Green’s functions: 

Propagators and vertices

Although they are:
• Gauge-dependent

• Renormalization point (µ) and scheme-dependent

However
• They capture characteristic features of the underlying dynamics, both

perturbative and non-perturbative.

• When appropriately combined they give rise to physical observables.

Crucial pieces for completing the QCD puzzle



QCD



The nonperturbative QCD problems

ConfinementMass
generation

¥ The Green’s functions are crucial for exploring the outstanding
nonperturbative problems of QCD: 

Bound
states



Nonpertubative tools
• Non-perturbative physics requires special tools. 

• For QCD we have (first principles): 

• Lattice simulations

• Space-time is discretized;

• The precision depends on the lattice spacing parameter and 
volume.



Lattice
Suppose we wanted to study the 
Mona Lisa:

The second 
image comes 
from putting the 
image on a 
lattice, you see 
that we lose 
details about 
small things  
(effects of the 
lattice space)

The third image 
comes from having 
a smaller canvas 
size so that we 
cannot see the big 
picture of the entire 
image (small 
volume)

The first image is 
the original.

If you’re interested in only the broad features Mona Lisa’s face , then the lattice 
isn’t so bad.  But, if you are a fine art critic…

Source: Quantum Diaries

Source: Blog Coleção 
de Partículas - IFSC



• Insightful computational framework.

• Equations of motion for off-shell Green's functions.

• It can be understood as the generalization of the Euler-Lagrange equation
for a classical field .

• Derived formally from the generating functional.

• Infinite system of coupled nonlinear integral equations.

• Inherently non-perturbative, but at the same time  captures the
perturbative behavior à It  accommodates the full range of physical
momenta. 

Schwinger-Dyson equations - SDE



How to derive the SDE? 
• Derived formally from the generating functional 

which is equivalent to  

• This equation is a compact form of equations of motion 
for the Green's functions.

• One has a tower of non-linear coupled integral equations.

Derivation using functional methods:
C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33, 477-575 (1994)
R. Alkofer and L. von Smekal, Phys. Rept. 353, 281 (2001)
E. S. Swanson,  AIP Conf. Proc. 1296, no.1, 75-121 (2010)
M. Q. Huber, Phys. Rept. 879, 1-92 (2020)
R.J. Rivers, Path Integral Methods in Quantum Field Theory, Cambridge University Press, New York (1990). 



� Although the functional method is the formal way to derive the SDEs,  it 
is quite abstract.  Let us derive these equations in a diagrammatic way.

� First, let us do for QED which is easier than QCD.

� The full electron propagator is defined as 

and diagramatically represented by

� The full electron propagator is the sum all
connected diagrams which start and end with a electron leg. 

SDEs –Diagrammatic way

x′ x
iS(x′ − x) =

Based on:
J.D.Bjorken and S.D.Drell, “Relativistic quantum fields”, McGraw Hill Book Company, New York  (1965).
M.R.Pennington, J. Phys. Conf. Ser. 18, 1-73 (2005).



� The connected diagrams can be separated in two
classes 

Improper: CAN be split into two by removing a single line.

Proper or one particle irreducible (1PI): CANNOT be split into
two by removing a single line.

Connected
Diagrams

Examples:



� In the momentum space, we can write the full electron propagator,  iS(p) as

where

is the electron propagator at tree level. 

In addition, !Σ # represents the sum of all proper diagrams of one-electron
with momentum p (the external legs removed)  - Electron self-energy

= + + + · · ·

iS iS0 iS0[−iΣ]iS0 iS0[−iΣ]iS0[−iΣ]iS0= + + + · · ·

−iΣ(p) =



� The series

can be summed (Dyson sum), leading us to Remember that

sum of all

1PI diagrams – full self-energy

Full (complete, dressed)

Electron propagator

= + + + · · ·

iS iS0 iS0[−iΣ]iS0 iS0[−iΣ]iS0[−iΣ]iS0= + + + · · ·



How do we calculate the electron
full self-energy?

� The electron full self-energy is given by

� We would count twice the following diagram, if we have added another
full vertex at $.

−iΣ(p) =

Electron SDE 

=
p

p p p
k

p− k

µ ν
−

( ( )−1)−1



Photon SDE
� In a similar way, we can build the SDE for the photon

propagator

where the yellow circle represents the sum of all connected diagrams
(proper and improper). 

x′ x
i∆µν(x− x′) =



� Once again,  we separate the proper from the improper ones. 

ImproperProper (1PI)

µ ν
ie20Πµν(q) =

q q

The sum of all 1PI diagrams is: 

vacuum polarization

x′ x



� In analogy to the electron case, we can express the full photon
propagator as 

= + + + · · ·

i∆µν(q) = i∆µν
0 (q) + · · ·i∆µλ

0 [ie20Πλσ]i∆σν
0 i∆µλ

0 [ie20Πλσ]i∆σα
0 [ie20Πατ ]i∆τν

0+ +



The vacuum polarization
� The full vacuum polarization is given by the following equation

µ ν
ie20Πµν(q) =

q q

Photon SDE 

µ
q

−
q

ν µ

(( )−1)−1
=

ν

q q
µ

k

k + q

ν



p− k

p′ − k

p

p′

SDE for the electron-photon vertex

� Similarly, one can obtain the SDE for the electron-photon vertex

=

p′ + k

p+ k

µ

p

p′

p

p′

p

+

p′

q q q

µ µ

Scattering kernel – electron-positron



SDE tower for QED

=

p′ + k

p+ k

µ

p

p′

p

p′

p

+

p′

q q q

µ µ

Photon SDE 

Electron SDE 

Vertex SDE 

• They form an infinite set of coupled integral equation!   

=
p

p p p
k

p− k

µ ν
−

( ( )−1)−1

µ
q

−
q

ν µ

(( )−1)−1
=

ν

q q
µ

k

k + q

ν



Need for a truncation scheme
� First, let us examine the SDE for the fermion in isolation

=
p

p p p
k

p− k

µ ν
−

( ( )−1)−1

� This equation is more complicated than it seems. 

• The full electron propagator (containing all order corrections) can be written as 

• Notice that at tree level and

• The pole of the propagator defines the mass of the particle. Dynamical mass

A and B are unknown functions



• The full photon propagator, in general covariant gauges, can be written as

• Here we will focus in the

• At tree level,  the photon propagator (in the Landau gauge)  is given by

is the full (all-order) photon propagator
Unknown quantity determined from its own SDE



=
p

p p p
k

p− k

µ ν
−

( ( )−1)−1

• The most general Lorentz structure of the full electron-photon is composed by 12 
tensorial structures - [ two momenta and a free Lorentz index ]

where the form factors are unknown functions
which satisfy their own SDE.

At tree level à

=

p′ + k

p+ k

µ

p

p′

p

p′

p

+

p′

q q q

µ µ



� To sum up, we have: 

=
p

p p p
k

p− k

µ ν
−

( ( )−1)−1

à 2 unknowns functions, A and B from full electron propagator, which

are coupled 1 (photon) + 12 (form factors of the vertex) unknowns functions: 

µ
q

−
q

ν µ

(( )−1)−1
=

ν

q q
µ

k

k + q

ν
=

p′ + k

p+ k

µ

p

p′

p

p′

p

+

p′

q q q

µ µ

+

+ ... 



� To understand the basic principles of the dynamical mass generation, it 
is not necessary to solve this intricate coupled system.

� Let's make some approximations to get the general idea of the problem.

� We will approximate the photon propagator and the vertex by their tree
level values,  i.e. 

� Then, only the electron is treated nonperturbatively. Diagrammatically
we have

=
p

p p p
k

p− k

µ ν
−

( ( )−1)−1

+

+ + + · · ·

=

Rainbow approximation


