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Exciting experimental promises

• With the EIC yellow report and Chinese EIcC white
paper, deeply virtual Compton scattering (DVCS) will
enter an era of more precise data over a much larger
kinematic range.

• It is considered as a golden channel of extraction of
generalised parton distributions (GPDs) and already
provides many observables for fits. It is therefore
necessary to re-examine the problem of unbiased
extraction of GPDs from DVCS data.

2 / 49



Overview

1. Deeply virtual Compton scattering and the structure of hadrons

2. Warming-up: extraction of gravitational form factors

3. Position of the problem: deconvoluting a Compton form factor

4. Shadow GPDs

5. Perspectives

3 / 49



Deeply virtual Compton scattering and the structure of hadrons

1. Deeply virtual Compton scattering and
the structure of hadrons
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Deeply virtual Compton scattering and the structure of hadrons

DVCS is the scattering of a lepton on a hadron via a photon of large virtuality, producing a
real photon in the final state. It is an exclusive process with an intact recoil proton.
• x is the average light-front plus-momentum (longitudinal momentum in a fast moving

hadron) fraction of the struck parton
• ξ describes the light-front plus-momentum transfer, linked to Björken’s variable xB
• t = ∆2 is the total four-momentum transfer squared

Tree-level depiction of DVCS for x > |ξ| (left) and ξ > |x | (right)

GPDs were introduced more
than two decades ago in
[Müller et al, 1994],
[Radyushkin, 1996] and [Ji,
1997].
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Deeply virtual Compton scattering and the structure of hadrons

Similarly to the introduction of parton distribution functions (PDFs) in the study of DIS,
• For a large photon virtuality Q2 = −q2, finite xB and small total four-momentum transfer

squared t, factorisation theorems describe DVCS in terms of a hard scattering part
computable thanks to perturbative QCD, and a non-perturbative part described by
generalised parton distributions (GPDs).
• The amplitude of DVCS is parametrised by Compton form factors (CFFs) F , which

write as convolutions of perturbative coefficient functions T a
F and the GPDs F a:

CFF convolution (leading twist) [Radyushkin, 1997], [Ji, Osborne, 1998], [Collins,
Freund, 1999]

F(ξ, t,Q2) =
∑

parton type a

∫ 1

−1

dx

ξ
T a
F

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
F a(x , ξ, t, µ2) (1)

F a(x , ξ, t, µ2) → F g (x , ξ, t, µ2)/x for the usual definition of gluon GPD

µ is the factorisation / renormalisation scale, αs the strong coupling.
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Deeply virtual Compton scattering and the structure of hadrons

Properties of GPDs

• For the proton, 4 GPDs without helicity transfer Ha, E a, H̃a, Ẽ a and 4 GPDs with
helicity flip.

• GPDs are defined in terms of non-local matrix elements.

• They are real functions of (x , ξ, t, µ2), with even parity in ξ.

• The forward limit t → 0, ξ → 0 gives back the usual PDF

Hq(x , ξ = 0, t = 0, µ2) = f q(x , µ2) (2)

• Their evolution with scale µ2 generalizes the evolution kernels of the PDF (DGLAP) and
the distribution amplitude (ERBL). [Müller, 1994]

• Because of the parity of the process, DVCS only involves the C -even – or singlet – GPDs,
given e.g. for Hq by

Hq(+)(x , ξ, t, µ2) = Hq(x , ξ, t, µ2)− Hq(−x , ξ, t, µ2) (3)
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Deeply virtual Compton scattering and the structure of hadrons

Polynomiality of Mellin moments: [Ji, 1998], [Radyushkin, 1999]
Due to Lorentz covariance,∫ 1

−1
dx xnHq(x , ξ, t, µ2) =

n+1∑
k=0 even

Hq
n,k(t, µ2)ξk (4)

This property implies that the GPD is the Radon transform of a double distribution F q (DD)
with an added D-term on the support Ω = {(β, α) | |β|+ |α| < 1}:

Double distribution formalism [Radyushkin, 1997], [Polyakov, Weiss, 1999]

Hq(x , ξ, t, µ2) =

∫
Ω
dβdα δ(x − β − αξ)

[
F q(β, α, t, µ2) + ξδ(β)Dq(α, t, µ2)

]
(5)
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Deeply virtual Compton scattering and the structure of hadrons

Impact parameter distribution (IPD) [Burkardt, 2000]

Ia(x ,b⊥, µ
2) =

∫
d2∆⊥
(2π)2

e−ib⊥·∆⊥F a(x , 0, t = −∆2
⊥, µ

2) (6)

is the density of partons with plus-momentum x and transverse position b⊥ from the center of
plus momentum in a hadron → hadron tomography

Density of up quarks (valence GPD) in an unpolarized proton from a parametric fit to DVCS
data in the PARTONS framework [Moutarde et al, 2018].
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Deeply virtual Compton scattering and the structure of hadrons

• Remarkably, GPDs allow access to gravitational form factors (GFFs) of the
energy-momentum tensor (EMT) [Ji, 1997] defined for parton of type a

Gravitational form factors [Lorcé et al, 2017]

〈p′, s ′|Tµν
a |p, s〉 = ū(p′, s ′)

{
PµPν

M
Aa(t, µ2) +

∆µ∆ν − ηµν∆2

M
Ca(t, µ2) + MηµνC̄a(t, µ2)

+
P{µiσν}ρ∆ρ

4M

[
Aa(t, µ2) + Ba(t, µ2)

]
+

P [µiσν]ρ∆ρ

4M
Da(t, µ2)

}
u(p, s)

(7)

where

∆ = p′ − p, t = ∆2, P =
p + p′

2
(8)
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Deeply virtual Compton scattering and the structure of hadrons

In the Breit frame (~P = 0, t = −~∆2),
radial distributions of energy and
momentum in the proton are described by
Fourier transforms of the GFFs w.r.t.
variable ~∆ [Polyakov, 2003].

• Example of such distribution: radial pressure anisotropy profile

sa(r , µ2) = −4M

r2

∫
d3~∆

(2π)3
e−i

~∆·~r t
−1/2

M2

d2

dt2

[
t5/2 Ca(t, µ2)

]
(9)

• This pressure profile can be extracted from GPDs thanks to e.g. for quarks∫ 1

−1
dx x Hq(x , ξ, t, µ2) = Aq(t, µ2) + 4ξ2Cq(t, µ2) (10)∫ 1

−1
dx x Eq(x , ξ, t, µ2) = Bq(t, µ2)− 4ξ2Cq(t, µ2) (11)
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Extraction of GFFs

2. Warming-up: extraction of gravitational form
factors from experimental data

12 / 49



Extraction of GFFs

• At this stage, we don’t need to fully extract the GPDs H or E to conveniently access the
GFF Cq(t, µ2). The polynomiality property gives that the GFF Cq(t, µ2) only depends
on the D-term via ∫ 1

−1
dz zDq(z , t, µ2) = 4Cq(t, µ2) (12)

• The experimental data is sensitive to the D-term through the subtraction constant
defined by the dispersion relation (see e.g. [Diehl, Ivanov, 2007])

LO dispersion relation

CH(t,Q2) = ReH(ξ, t,Q2)− 1

π

∫ 1

0
dξ′ ImH(ξ′, t,Q2)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
(13)

The subtraction constant CH(t,Q2) is a function of the D-term given at LO by

CH(t,Q2) = 2
∑
q

e2
q

∫ 1

−1
dz

Dq(z , t,Q2)

1− z
(14)
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Extraction of GFFs

• How do we get from∫ 1

−1
dz

Dq(z , t, µ2)

1− z
to

∫ 1

−1
dz zDq(z , t, µ2) ? (15)

• This is a prototype of the more complicated GPD extraction problem we will face later
on. The known solution is through evolution.
• Let’s expand the D-term on a basis of Gegenbauer polynomials

Dq(z , t, µ2) = (1− z2)
∑

odd n

dq
n (t, µ2)C

3/2
n (z) (16)

Then

GFF Ca extraction∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ2) and

∫ 1

−1
dz zDq(z , t, µ2) =

4

5
d1(t, µ2) (17)
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Extraction of GFFs

• Because Gegenbauer polynomials diagonalize the LO ERBL [Lepage, Brodsky, 1979],
[Efremov, Radyushkin, 1979] evolution kernel, each term dq

n (t, µ2) actually d±n but that does not change

the argument evolves multiplicatively with a different anomalous dimension. Since exponentials
are a free family on any non-vanishing interval, the decomposition∫ 1

−1
dz

Dq(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ2) (18)

is unique, non-ambiguous and theoretically allows to entirely retrieve the D-term
from the knowledge of the subtraction constant on any non-vanishing interval in
Q2 = µ2.

• All is well on paper, but what about in real life?
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Extraction of GFFs

• We performed an analysis of the subtraction constant using most of the world DVCS
dataset obtained over 17 years of experiments.

• The CFFs are fitted using a neural network (NN) to assess realistic uncertainties in
[Moutarde et al, 2019]. Replicas of the NN are freely accessible on PARTONS
(https://partons.cea.fr).

• The resulting uncertainty is considerably larger than in constrained parametrization fits.

• Complete details, notably about evolution, are found in [Dutrieux et al, Eur.Phys.J.C
81 (2021) 4, 300].
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Extraction of GFFs
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Extraction of GFFs

We then assume that the D-term takes the following form (multipole Ansatz for t-dependence
and neglecting all terms in the Gegenbauer expansion except the first)

Dq(z , t, µ2) = 3(1− z2)z

(
1− t

M2
D

)−α
dq

1 (µ2) (19)

Choosing beforehand the t dependence fixes qualitatively the obtained pressure profile,
obtained by Fourier transforming with respect to ~∆.

In green, 68% confidence interval found for∑
q d

q
1 (t = 0, µ2), a critical parameter to

evaluate pressure profiles and results obtained
by other studies (black markers). The
parameter is compatible with 0 with current
experimental data.
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Extraction of GFFs

• What about we had not assumed only dq
1 was non-zero? Then as the space of functional

dependence of Dq(z) increases, so does the possibility of stumbling on a D-term with
negligible contributions to the subtraction constant, but considerable
contributions to the GFF (for instance, a D-term which is an eigenvector for a negligible
eigenvalue of the linear operator represented by the subtraction constant). Since

CH(t,Q2) = 4
∑
q

e2
q

∑
odd n

dq
n (t, µ2) (20)

it is easy to see that at a given µ2
0, if

dq
1 (t, µ2

0) = −dq
3 (t, µ2

0) (21)

the subtraction constant vanishes, but not the GFF

Cq(t, µ2
0) =

1

5
dq

1 (t, µ2
0) (22)
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Extraction of GFFs

• If the effect of evolution is not significant enough, when allowing dq
3 to be non-zero, the

result is polluted by large configurations where dq
1 = −dq

3 . Since the initial result was
compatible with 0, these configurations become dominant.

The correlation coefficient between dq
1 and dq

3 is of
-0.997.
Conclusion: We have to find a way to evaluate the
conditioning of our inverse problem given a functional
liberty on the function of interest and a range of
evolution in µ2.
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Deconvoluting a Compton form factor

3. Position of the problem:
deconvoluting a Compton form factor
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Deconvoluting a Compton form factor

We remind that DVCS experimental data are parametrized in terms of CFFs, which write as
the convolution (given for GPD Ha)

H(ξ, t,Q2) =
∑

parton type a

∫ 1

−1

dx

ξ
T a
F

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
Ha(x , ξ, t, µ2) (23)

Position of the problem
Assuming a CFF has been extracted from experimental data with excellent precision – and the
different gluon and flavour contributions have been separated, through a global analysis with
various targets and processes – we are left with the convolution:∫ 1

−1

dx

ξ
T q

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
Hq(x , ξ, t, µ2) = T q(Q2, µ2)⊗ Hq(µ2) (24)

where T q is a coefficient function computed in pQCD. Can we then ”de-convolute” eq.
(24) to recover Hq(x , ξ, t, µ2) from T q(Q2, µ2)⊗ Hq(µ2)?
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Deconvoluting a Compton form factor

• Question was raised 20 years ago. Evolution was proposed as a crucial element in
[Freund, 1999], but the question remains essentially open.

• We show that GPDs exist which bring contributions to the LO and NLO CFF of only
subleading order even under evolution. We call them LO and NLO shadow GPDs.

Definition of a LO shadow GPD

For a given scale µ2
0,

∀ξ,∀t,T q
LO(Q2, µ2

0)⊗ Hq(µ2
0) = 0 and Hq(x , ξ = 0, t = 0, µ2

0) = 0 (25)

so for Q2 and µ2 close enough to µ2
0, T

q
LO(Q2, µ2)⊗ Hq(µ2) = O(αs(µ2)) (26)

• Let Hq be a LO shadow GPD, and Gq be any GPD. Then Gq and
Gq + Hq have the same forward limit, and the same LO CFF up to
a numerically small and theoretically subleading contribution.
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Deconvoluting a Compton form factor

• Question was raised 20 years ago. Evolution was proposed as a crucial element in
[Freund, 1999], but the question remains essentially open.

• We show that GPDs exist which bring contributions to the LO and NLO CFF of only
subleading order even under evolution. We call them LO and NLO shadow GPDs.

Definition of an NLO shadow GPD

For a given scale µ2
0,

∀ξ,∀t,T q
NLO(Q2, µ2

0)⊗ Hq(µ2
0) = 0 and Hq(x , ξ = 0, t = 0, µ2

0) = 0 (25)

so for Q2 and µ2 close enough to µ2
0, T

q
NLO(Q2, µ2)⊗ Hq(µ2) = O(αs

2(µ2)) (26)

• Let Hq be an NLO shadow GPD, and Gq be any GPD. Then Gq and
Gq + Hq have the same forward limit, and the same NLO CFF up to
a numerically small and theoretically subleading contribution.
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Shadow GPDs

4. Shadow GPDs

^

arXiv:2104.03836, to appear in Phys. Rev. D
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Shadow GPDs at leading order

• We search for our shadow GPDs as simple double distributions (DD) F (β, α, µ2) to
respect polynomiality, with a zero D-term. Then, thanks to dispersion relations, we can
restrict ourselves to the imaginary part only Im T q(Q2, µ2

0)⊗ Hq(µ2
0) = 0.

• We also omit t since it is untouched by the convolution.

• Leading order It is well-known that the LO CFF only probes the GPD on the x = ξ line
and the D-term, so a LO shadow GPD is simply given by:

Im T q
LO(Q2, µ2

0)⊗ Hq(µ2
0) ∝ Hq(+)(ξ, ξ, µ2

0) = 0 (27)

Hq(x , ξ = 0, µ2
0) = 0 (28)

where Hq(+) denotes the singlet GPD (x-odd part of the GPD).
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Shadow GPDs at leading order

• We search our DD as a polynomial of order N in (β, α), characterised by ∼ N2

coefficients cmn:
F (β, α, µ2

0) =
∑

m+n≤N
cmn α

mβn (29)

• The associated GPD is obtained by the linear Radon transform, given by the matrix R for
x > |ξ| (not diverging for |ξ| → 1 thanks to the cancellation of poles when x → 1):

Hq(+)(x , ξ, µ2
0) =

N+1∑
u=1

1

(1 + ξ)u
+

1

(1− ξ)u

N+1∑
v=0

quv x
v where quv =

∑
m,n

Rmn
uv cmn (30)

Rmn
uv =

n∑
j=0

(−1)u+v+j

m + j + 1

(
n
j

)(
j

m − u + j + 1

)(
m + j + 1
v − n + j

)
(31)
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Shadow GPDs at leading order

• The Radon transform is expressed in terms of the rectangular matrix R between the
appropriately chosen bases.

• R is a block-diagonal, triangular inferior matrix with a correct ordering of both bases.

• The inverse Radon transform is obtained by inverting a submatrix of R. We find

cm,n = −
(
n + m
m

)
(n + m + 1)

m∑
k=0 even

(
m
k

)
Em−k qk+1,n+m+1 (32)

where the E2i are Euler numbers, notably defined by

1

cosh(t)
=

∞∑
k=0 even

Ek
tk

k!
, or

n∑
k=0 even

(
n
k

)
Ek = 0 for n even ≥ 1 (33)
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Shadow GPDs at leading order

• For our LO shadow GPD, we first want Hq(+)(ξ, ξ, µ2
0) = 0, so we notice that

Hq(+)(ξ, ξ, µ2
0) =

N+1∑
w=1

kw
(1 + ξ)w

where kw =
∑
u,v

Cuv
w quv , Cuv

w = (−1)u+v+w

(
v

u − w

)

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (34)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (35)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (34)

• We then want Hq(+)(x , ξ = 0, µ2
0) = 0, so we notice that

Hq(+)(x , 0, µ2
0) =

N+1∑
w=0

qwx
w where qw =

∑
u,v

Quv
w quv , Quv

w = 2δvw

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (35)
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (34)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (35)

• Both linear systems C .R and Q.R are systems of ∼ N equations for ∼ N2 variables, so
the number of solutions grows quadratically with N, order of the polynomial DD.
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Shadow GPDs at leading order

Cancelling the LO CFF

Hq(+)(ξ, ξ, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(C .R) (34)

Cancelling the forward limit

Hq(+)(x , ξ = 0, µ2
0) = 0 =⇒ (cmn)m,n ∈ ker(Q.R) (35)

LO shadow GPDs

Here is an example of an infinite family of LO shadow DDs, each being of degree N ≥ 9 odd

FN(β,α,µ2
0)=βN−8

[
α8− 28

9
α6

(
N2−3N+20

(N+1)N
+β2

)
+ 10

3
α4

(
N2−7N+40

(N+1)N
+ 2(N2−3N+44)

3(N+1)N
β2+β4

)

− 4
3
α2

(
N2−11N+60

(N+1)N
−N−8

N
β2−N2−3N−28

(N+1)N
β4+β6

)
+ 1

9
(1−β2)2

(
N2−15N+80

(N+1)N
− 2(N−8)

N
β2+β4

)]
(36)
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Shadow GPDs at next-to-leading order

• First study beyond leading order: Apart from the LO part, the NLO CFF is composed
of a collinear part (compensating the α1

s term resulting from the convolution of the LO
coefficient function and the evoluted GPD) and a genuine 1-loop NLO part.

Hq(ξ,Q2) = Cq
0 ⊗ Hq(+)(µ2

0)+αs(µ2)Cq
1 ⊗ Hq(+)(µ2

0)+αs(µ2)Cq
coll ⊗ Hq(+)(µ2

0) log

(
µ2

Q2

)
(37)

An explicit calculation of each term for our polynomial double distribution gives that

Im T q
coll(Q

2, µ2)⊗ Hq(µ2) ∝

αs(µ2) log

(
µ2

Q2

)[(
3

2
+ log

(
1− ξ

2ξ

))
Im T q

LO ⊗ Hq(µ2) +
N+1∑
w=1

k
(coll)
w

(1 + ξ)w

]
(38)

and assuming Im T q
LO ⊗ Hq(µ2) = 0,

Im T q
1 (Q2, µ2)⊗ Hq(µ2) ∝ αs(µ2)

[
log

(
1− ξ

2ξ

)
Im T q

coll ⊗ Hq(µ2) +
N−1∑
w=1

k
(1)
w

(1 + ξ)w

]
(39)

filler
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Shadow GPDs at next-to-leading order

• Cancelling both terms gives rise to two additional systems with a linear number of
equations. The first NLO shadow GPD is found with a polynomial DD of order N = 21.

• Furthermore, we add the condition that the DD vanishes at the edges of its support to
ensure continuity at the (x , ξ) = (1, 1) point. Indeed,

lim
ε→0

Hq(+)
(

1− ε

λ
, 1− ε

)
=

∫ 1/λ

0
dαF q(+) (1− α, α) (40)

so unless F q(+) (1− α, α) = 0, the limit would be different depending on the path taken
to the limit coming from the x > |ξ| region.

• Adding this condition, a first solution is found with a polynomial DD of order N = 25 (see
below).
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Shadow GPDs at next-to-leading order

Color plot of an NLO shadow GPD at initial scale 1 GeV2, and its evolution
for ξ = 0.5 up to 106 GeV2 via APFEL++ [Bertone, 2018] and PARTONS.
Notice that the diagonal x = ξ barely evolves.
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Shadow GPDs at next-to-leading order

• Under evolution, the quark component of the NLO CFF writes

Hq(ξ,Q2) = Cq
0 ⊗H

q(+)(µ2
0)+αs(µ2)Cq

1 ⊗H
q(+)(µ2

0)+αs(µ2)Cq
coll⊗H

q(+)(µ2
0) log

(
µ2

Q2

)

+αs(µ2)Cq
0 ⊗ K

(0)
qq ⊗ Hq(+)(µ2

0) log

(
µ2

µ2
0

)
+O(α2

s (µ2)) (41)

• By construction of an NLO shadow GPD, we specifically cancelled all terms on the first
line. Since

Cq
coll + Cq

0 ⊗ K
(0)
qq = 0 (42)

by requirement that the CFF does not exhibit a scale dependence other than the residual
dependence resulting from the perturbative truncation, the first term of the second line
vanishes as well.

• The evolution of the diagonal corresponds to the evolution of the LO CFF, and is also of
order O(α2

s (µ2)), explaining so specifically small.
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Shadow GPDs at next-to-leading order

• Under evolution, the quark component of the NLO CFF writes

Hq(ξ,Q2) = ((((((((
Cq

0 ⊗ Hq(+)(µ2
0)+αs(µ2)((((((((

Cq
1 ⊗ Hq(+)(µ2

0)+αs(µ2)(((((((((
Cq
coll ⊗ Hq(+)(µ2

0) log

(
µ2

Q2

)

+αs(µ2)Cq
0 ⊗ K

(0)
qq ⊗ Hq(+)(µ2

0) log

(
µ2

µ2
0

)
+O(α2

s (µ2)) (43)

• By construction of an NLO shadow GPD, we specifically cancelled all terms on the first
line. Since

Cq
coll + Cq

0 ⊗ K
(0)
qq = 0 (44)

by requirement that the CFF does not exhibit a scale dependence other than the residual
dependence resulting from the perturbative truncation, the first term of the second line
vanishes as well.

• The evolution of the diagonal corresponds to the evolution of the LO CFF, and is also of
order O(α2

s (µ2)), explaining so specifically small.
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Shadow GPDs at next-to-leading order

• Under evolution, the quark component of the NLO CFF writes

Hq(ξ,Q2) = ((((((((
Cq

0 ⊗ Hq(+)(µ2
0)+αs(µ2)((((((((

Cq
1 ⊗ Hq(+)(µ2

0)+αs(µ2)(((((((((
Cq
coll ⊗ Hq(+)(µ2

0) log

(
µ2

Q2

)

+αs(µ2)(((((((((((
Cq

0 ⊗ K
(0)
qq ⊗ Hq(+)(µ2

0) log

(
µ2

µ2
0

)
+O(α2

s (µ2)) (45)

• By construction of an NLO shadow GPD, we specifically cancelled all terms on the first
line. Since

Cq
coll + Cq

0 ⊗ K
(0)
qq = 0 (46)

by requirement that the CFF does not exhibit a scale dependence other than the residual
dependence resulting from the perturbative truncation, the first term of the second line
vanishes as well.

• The evolution of the diagonal corresponds to the evolution of the LO CFF, and is also of
order O(α2

s (µ2)), explaining so specifically small.
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Shadow GPDs at next-to-leading order

• By linearity of both the CFF convolution and the evolution equation, we can evaluate
separately the contribution to the CFF of a quark shadow NLO GPD under evolution.

• We probe the prediction of evolution as O(α2
s (µ2)) with our previous NLO shadow GPD

on a lever-arm in Q2 of [1, 100] GeV2 (typical collider kinematics) using APFEL++ code.

• The fit by α2
s (µ2) is very good up to values of αs of

the order of its MS values. For larger values, large
logs and higher orders slightly change the picture.

• The numerical effect of evolution remains very
small. For a GPD of order 1, the NLO CFF is only
of order 10−5.
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Shadow GPDs at next-to-leading order

In practice, this is the Goloskov-Kroll (GK) GPD model at scale 1 GeV2

ξ = 0.1 (left) and ξ = 0.5 (right)
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Shadow GPDs at next-to-leading order

The orange and brown models are GK + NLO shadow GPDs. For ξ close to 0 and x close
to ξ, by design, they are very close, but vastly different otherwise. They give rise to NLO CFFs
which are exactly identical at this scale, and different by a negligible amount for expected Q2

lever arm.

ξ = 0.1 (left) and ξ = 0.5 (right) 41 / 49
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Perspectives

• We have explicitly demonstrated the difficulties of extracting GPDs with a pure DVCS +
DIS approach even at NLO. It is foreseeable this discussion extends to higher orders of
DVCS.
• Other exclusive processes can be expressed in terms of GPDs. Close parent to DVCS is

time-like Compton scattering (TCS) [Berger et al, 2002]. Although its measurement
will reduce the uncertainty, especially on ReH [Jlab proposal PR12-12-001], and produce
a valuable check of the universality of the GPD formalism, the similar nature of its
convolution (see [Müller et al, 2012]) makes it subject to the same shadow GPDs.

DVCS (left) and TCS (right)
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Perspectives

• Reducing uncertainties on CFFs itself, even if not a solution to the deconvolution problem
presented here, is a very useful task. e.g. hadron matter properties were compatible with
0 largely because of the uncertainty on Re H in [Dutrieux et al, Eur.Phys.J.C 81 (2021)
4, 300].
• The proposal to install a positron beam at JLab [Afanasev et al, 2019] can help on this

task. We have performed in [Dutrieux et al, arXiv:2105.09245] a reweighting of our
neural network replicas of CFFs against simulated new experimental points.
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Perspectives

• Deeply virtual meson production (DVMP) [Collins et al, 1997] is also an important
source of knowledge on GPDs, with currently a larger lever arm in Q2. The process
involves form factors of the general form

F(ξ, t) =

∫ 1

0
du

∫ 1

−1

dx

ξ
φ(u)T

(
x

ξ
, u

)
F (x , ξ, t) (47)

with φ(u) is the leading-twist meson distribution amplitude (DA).

• At LO, the GPD and DA parts of the integral factorize and shadow GPDs cancel the form
factor.

• Situation at NLO remains to be clarified, it is foreseeable new shadow GPDs (dependent
on the DA) could be generated also for this process.
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Perspectives

• New experimental channels: more experimentally challenging processes offer a richer
access to GPDs thanks to more handles with kinematic variables.
• Double deeply virtual Compton scattering (DDVCS) – proposed at JLab with SOLID

(LOI12-15-005) and CLAS12 (LOI12-16-004) – which gives access directly to the (x , ξ) value
of GPDs in the ERBL region at LO.

• Multiparticle production: diphoton [Pedrak et al, 2017], photon-rho [Boussarie et al, 2017]

• Lattice QCD: low order Mellin moments of GPDs will not change significantly the
previously exposed picture. Where a new order of DVCS put N constraints on a DD of
polynomial order N, a new Mellin moment only brings a finite number of constraints.

• Extractions of the x-dependence of parton distributions are an interesting prospects,
which we start to consider.
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Perspectives

Positivity constraints [Radyushkin, 1999], [Pire et al, 1999], [Diehl et al, 2001], [Pobylitsa,
2002]

• Stemming from the representation of GPDs as overlap between light-front wave functions,
positivity constraints are a Cauchy-Schwart like inequality relating GPDs to the PDFs,
e.g. for x ≥ |ξ|∣∣∣∣Hq(x , ξ, t)− ξ2

1− ξ2
Eq(x , ξ, t)

∣∣∣∣ ≤
√

1

1− ξ2
f q
(
x + ξ

1 + ξ

)
f q
(
x − ξ
1− ξ

)
(48)

• This inequality puts a maximal bound on the size of shadow GPDs in the DGLAP region,
and is especially constraining for large x .

• Since shadow GPDs are maximally violating positivity (their forward limit is 0), they are a
tool to correct a model giving satisfactory experimental agreement, but violating
positivity. (Work in progress)
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Conclusion

• Explicit demonstration of LO and NLO shadow GPDs of considerable size with a very
small and subleading contribution to CFFs. Such shadow GPDs will be hidden in
typical statistical and systematic uncertainties of DVCS. TCS or LO DVMP face
similar issues. We foresee that our discussion can be extended to higher order DVCS.
Other exclusive processes will help discriminate the DVCS shadow GPDs. Especially
DDVCS or Lattice QCD for instance should escape the dimensionality of data problem.

• Potential impact on hadron tomography due to the ξ → 0 extrapolation, determination
of OAM and mechanical properties to study.

• An extraction of GPDs with lesser systematic uncertainty requires a multi-channel
analysis, and the development of integrated analysis tools, like PARTONS

• More precise data over a much larger Q2 range promised by future colliders will be very
welcomed here and for the extraction of mechanical properties as well.

• More theoretical constraints, like positivity could play a significant role
in reducing the uncertainty.
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