Probing nucleon structure at NLO

Victor Martinez-Fernández

PhD student at the National Centre for Nuclear Research (NCBJ, Poland)

Seminar at e-HUGS 2021

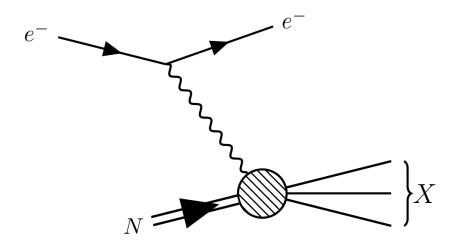
17/June/2021

Why NLO corrections?

Precise determination of GPDs (so nucleon tomography)

Universality testing in process that at Born level look alike

Refreshing Deep Inelastic Scattering (DIS)

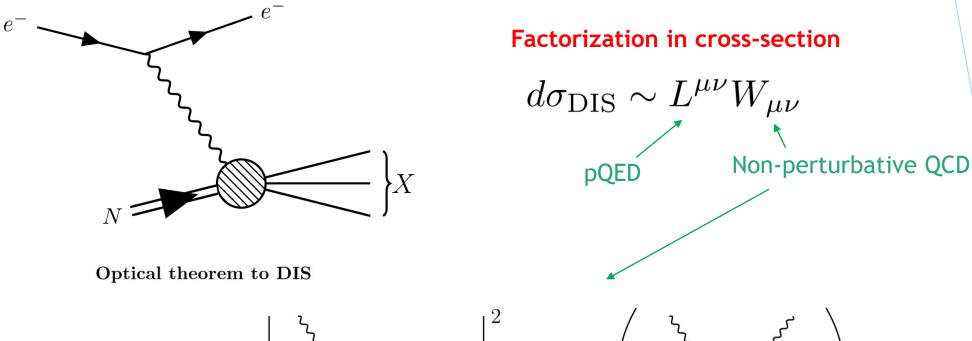


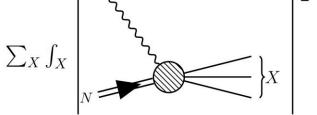
Factorization in cross-section

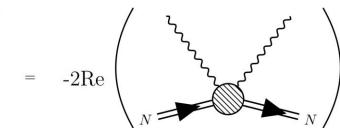
 $d\sigma_{\rm DIS} \sim L^{\mu\nu} W_{\mu\nu}$ pQED

Non-perturbative QCD

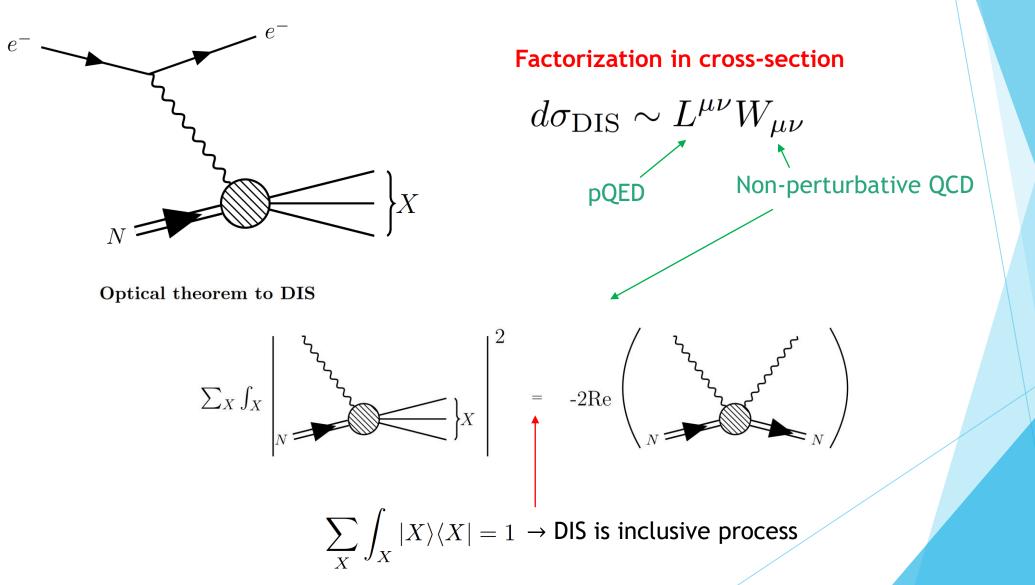
Refreshing Deep Inelastic Scattering (DIS)







Refreshing Deep Inelastic Scattering (DIS)



Parton Distribution Functions (PDFs)

Extracted from the hadronic tensor $W_{\mu\nu}$, they determine the internal nucleon structure

$$PDF(x) = \frac{1}{2} \int \frac{dz^+}{2\pi} e^{ixp^- z^+} \langle P | \bar{q}_f(-z/2) \gamma^+ \mathcal{W}[-z/2, z/2] q_f(z/2) | P \rangle \Big|_{z_\perp = z^- = 0}$$

Wilson line definition

$$\mathcal{W}[z_1^+, z_2^+] = \mathbb{P} \exp\left[ig \int_{z_2^+}^{z_1^+} d\eta^+ A^-\right]$$

Samuel Wallon. Hard exclusive processes in perturbative QCD: from medium to asymptotical energies. Doctoral Schools ED 107 (Physique de la Région Parisienne) and ED 517 (Particules, Noyaux et Cosmos). 2014.

Parton Distribution Functions (PDFs)

Extracted from the hadronic tensor $W_{\mu\nu}$, they determine the internal nucleon structure

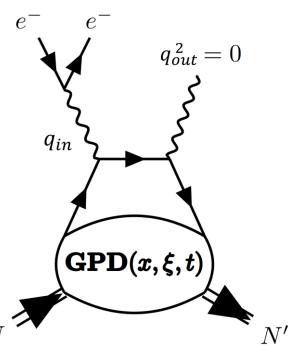
$$PDF(x) = \frac{1}{2} \int \frac{dz^{+}}{2\pi} e^{ixp^{-}z^{+}} \langle P | \bar{q}_{f}(-z/2) \gamma^{+} \mathcal{W}[-z/2, z/2] q_{f}(z/2) | P \rangle |_{z_{\perp}=z^{-}=0}$$

$$\gamma^{+} = \frac{\gamma^{0} + \gamma^{3}}{\sqrt{2}}$$

PDF is 1D *x* = longitudinal parton momentum

Improving PDF's 1D picture

- In 1997, Ji introduces Generalized Parton Distributions (GPDs) through Deeply Virtual Compton Scattering (DVCS) process
- The point now is to study the conversión of a virtual photon into a real one



Xiang-Dong Ji. Gauge-Invariant Decomposition of Nucleon Spin. Phys. Rev. Lett., 78:610-613, 1997

DVCS = exclusive process = factorization in amplitude

Sketch of DVCS amplitude

$$\mathcal{A}_{\text{DVCS}} \sim \int_{-1}^{1} dx \, \frac{1}{x - \xi + i0} \text{GPD}(x, \xi, t) + \cdots$$
$$= \text{PV}\left(\frac{1}{x - \xi}\right) (\text{GPD}(x, \xi, t)) - \int_{-1}^{1} dx \, i\pi \delta(x - \xi) \text{GPD}(x, \xi, t) + \cdots$$

So we can measure GPDs at $x = \pm \xi$ only, i.e., we can access $\text{GPD}(\pm \xi, \xi, t)$

GPD definition: 3D distribution

$$GPD(x,\xi,t) = \frac{1}{2} \int \frac{dz^{+}}{2\pi} e^{ixp^{-}z^{+}} \langle P' | \bar{q}_{f}(-z/2)\gamma^{+} \mathcal{W}[-z/2,z/2] q_{f}(z/2) | P \rangle |_{z_{\perp}=z^{-}=0}$$

$$Measure the difference \qquad \xi = -\frac{(q_{in} - q_{out})(q_{in} + q_{out})}{(P + P')(q_{in} + q_{out})}$$

$$t = (P - P')^{2}$$

GPD definition: 3D distribution

$$GPD(x,\xi,t) = \frac{1}{2} \int \frac{dz^{+}}{2\pi} e^{ixp^{-}z^{+}} \langle P' | \bar{q}_{f}(-z/2)\gamma^{+} \mathcal{W}[-z/2, z/2] q_{f}(z/2) | P \rangle |_{z_{\perp}=z^{-}=0}$$

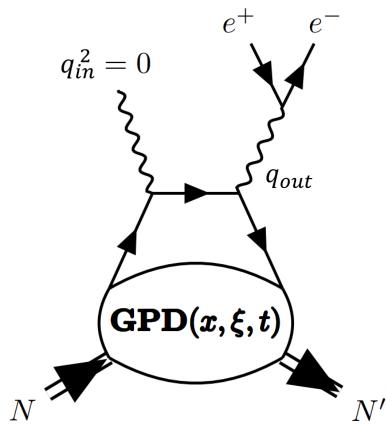
$$Measure the difference \qquad \xi = -\frac{(q_{in} - q_{out})(q_{in} + q_{out})}{(P + P')(q_{in} + q_{out})}$$

$$t = (P - P')^{2}$$

Nucleon tomography via Fourier transform in the plane transverse to proton motion

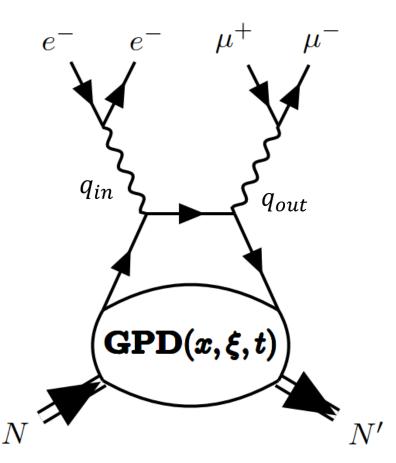
Other 2 "golden channels": TCS & DDVCS

- TCS or timelike Compton scattering
- Counterpart of DVCS
- A real photon transforms into a virtual one (lepton photo-production)



DDVCS or double DVCS

2 virtual photons: spacelike (incoming) and timelike (outgoing)

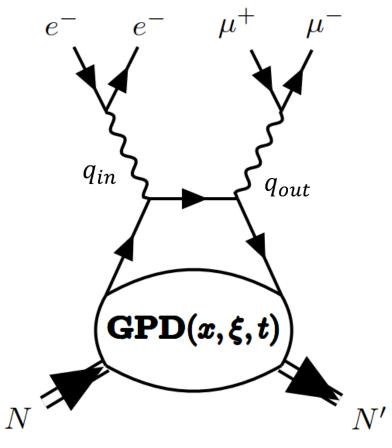


- DDVCS or double DVCS
- 2 virtual photons: spacelike (incoming) and timelike (outgoing)
- Allows to measure GPDs outside $x = \pm \xi$

Sketch of DDVCS amplitude

$$\mathcal{A}_{\text{DDVCS}} \sim \int_{-1}^{1} dx \, \frac{1}{x - x_B + i0} \text{GPD}(x, \xi, t) + \cdots$$
$$= \text{PV}\left(\frac{1}{x - x_B}\right) (\text{GPD}(x, \xi, t)) - \int_{-1}^{1} dx \, i\pi \delta(x - x_B) \text{GPD}(x, \xi, t) + \cdots$$

So now we can access $\text{GPD}(\pm x_B, \xi, t)$



Details in DDVCS

Here, x_B is the *generalized* Bjorken variable,

$$x_B = \frac{-q^2}{2pq}, \quad q = \frac{q_{in} + q_{out}}{2}, \quad p = \frac{P + P'}{2}$$

 q_{in}, q_{out} are the 4-momenta of incoming & outgoing photon P, P' are the 4-momentum of incoming & outgoing proton

Experimentally, DDVCS is very demanding: x-sec smaller than DVCS' \rightarrow EIC will have enough luminosity to accurate measurements

B. Pire, L. Szymanowski, and J. Wagner. NLO corrections to timelike, spacelike and double deeply virtual Compton scattering. *Phys. Rev. D*, 83:034009, 2011.

Renormalization

Need to renormalize both GPDs and hard part. Amplitude:

$$\mathcal{A}^{\mu\nu} = g_T^{\mu\nu} \int_{-1}^1 dx \left[\sum_q^{n_F} \tilde{T}^q(x) \tilde{F}^q(x) + \tilde{T}^g(x) \tilde{F}^g(x) \right]$$

Bare GPD
Bare hard-part coefficients

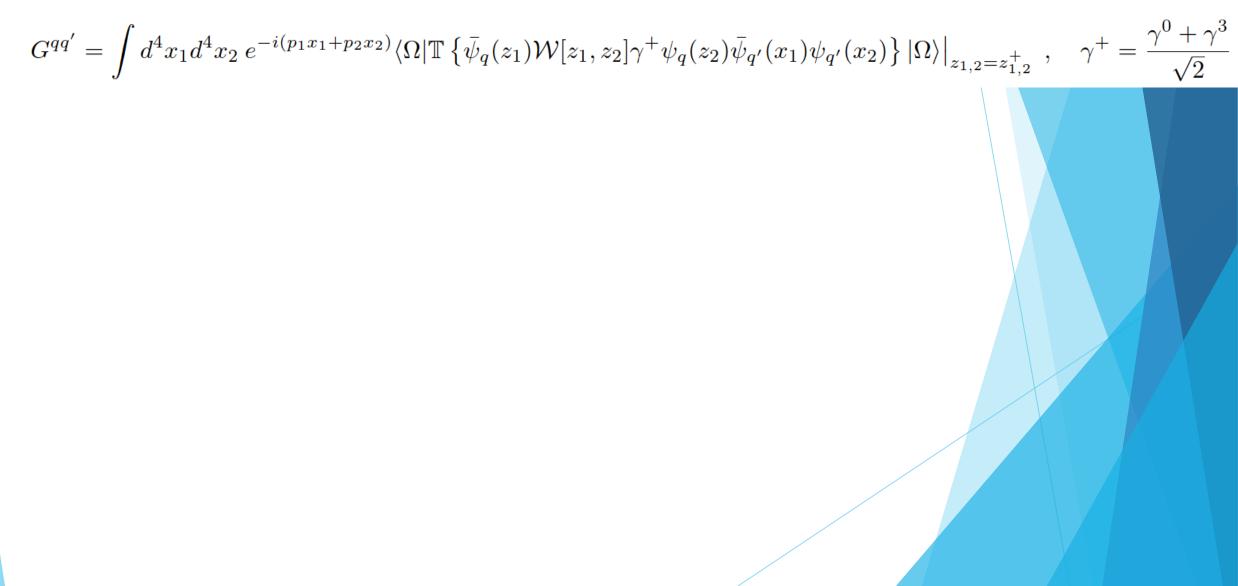
We can work in DDVCS and use

$$DDVCS|_{x_B=\xi} \rightarrow DVCS$$

 $DDVCS|_{x_B=-\xi} \rightarrow TCS$

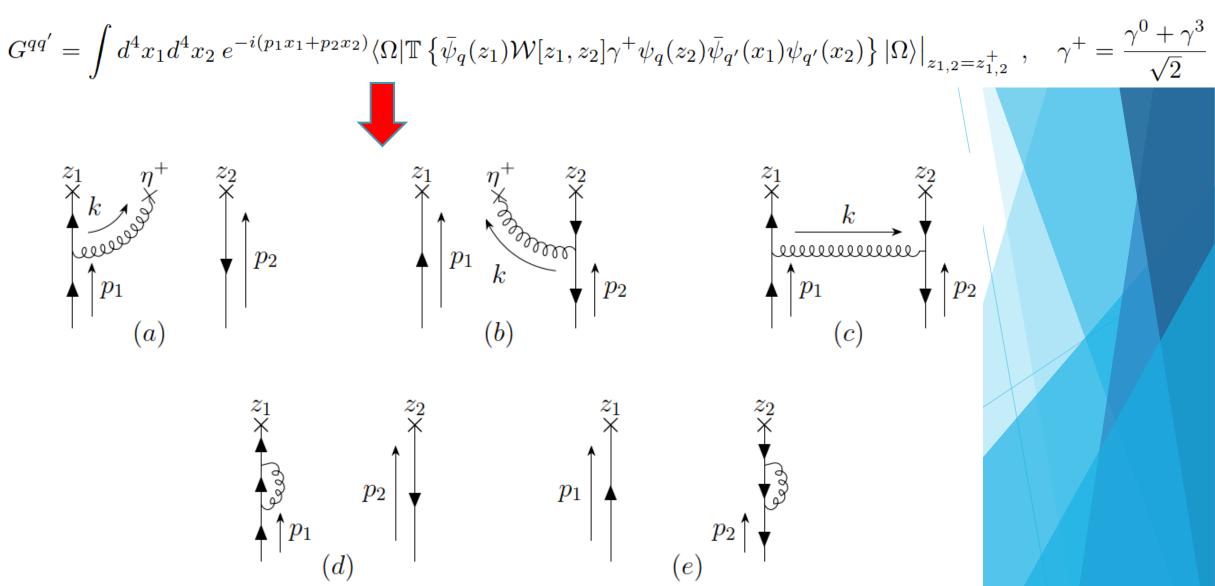
GPDs at NLO

Renormalize the associated Green function



GPDs at NLO

Renormalize the associated Green function



Final GPDs at NLO

$$\tilde{F}^{q}(x) = F^{q}(x) - \left(\frac{1}{\epsilon} + \frac{1}{2}\ln\frac{e^{\gamma}\mu_{F}^{2}}{4\pi\mu_{R}^{2}}\right)K^{qq}(x,x')\otimes F^{q}(x')$$
$$- \left(\frac{1}{\epsilon} + \frac{1}{2}\ln\frac{e^{\gamma}\mu_{F}^{2}}{4\pi\mu_{R}^{2}}\right)K^{qg}(x,x')\otimes F^{g}(x')$$

Kernels can be read fromM. Diehl, Phys. Rept. 388 (2003) 41;A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418, 1 (2005)

Hard part at NLO

$$\tilde{T}^{q} = C_{0}^{q} + \left(\frac{|Q^{2}|e^{\gamma}}{4\pi\mu_{R}^{2}}\right)^{\epsilon/2} \left(\frac{1}{\epsilon} C_{coll}^{q} + C_{1}^{q}\right) ,$$

The divergent part of the whole amplitude at NLO (1st order in α_s) is

$$\mathcal{A}_{div} = -\frac{2}{\varepsilon} \sum_{j} \int_{-1}^{1} dx \operatorname{GPD}_{R}^{j}(x) \mathcal{C}_{coll.}^{j}(x) + \frac{2}{\varepsilon} \sum_{i,j} \int_{-1}^{1} dx \, dx' \, K^{ij}(x,x') \operatorname{GPD}_{R}^{j}(x') \mathcal{C}_{0}^{i}(x')$$

Cancelling divergences, a.k.a., renormalizing

$$\mathcal{A}_{div} = -\frac{2}{\varepsilon} \sum_{j} \int_{-1}^{1} dx \operatorname{GPD}_{R}^{j}(x) \mathcal{C}_{coll.}^{j}(x) + \frac{2}{\varepsilon} \sum_{i,j} \int_{-1}^{1} dx \, dx' \, K^{ij}(x,x') \operatorname{GPD}_{R}^{j}(x') \mathcal{C}_{0}^{i}(x')$$

Cancelling divergences, a.k.a., renormalizing

$$\mathcal{A}_{div} = -\frac{2}{\varepsilon} \sum_{j} \int_{-1}^{1} dx \operatorname{GPD}_{R}^{j}(x) \mathcal{C}_{coll.}^{j}(x) + \frac{2}{\varepsilon} \sum_{i,j} \int_{-1}^{1} dx \, dx' \, K^{ij}(x,x') \operatorname{GPD}_{R}^{j}(x') \mathcal{C}_{0}^{i}(x')$$

The cancelation of divergences occurs if

$$\mathcal{C}^j_{coll.}(x) = \sum_i \int_{-1}^1 K^{ij}(y,x) \mathcal{C}^i_0(y) dy$$

Cancelling divergences, a.k.a., renormalizing

$$\mathcal{A}_{div} = -\frac{2}{\varepsilon} \sum_{j} \int_{-1}^{1} dx \operatorname{GPD}_{R}^{j}(x) \mathcal{C}_{coll.}^{j}(x) + \frac{2}{\varepsilon} \sum_{i,j} \int_{-1}^{1} dx \, dx' \, K^{ij}(x,x') \operatorname{GPD}_{R}^{j}(x') \mathcal{C}_{0}^{i}(x')$$

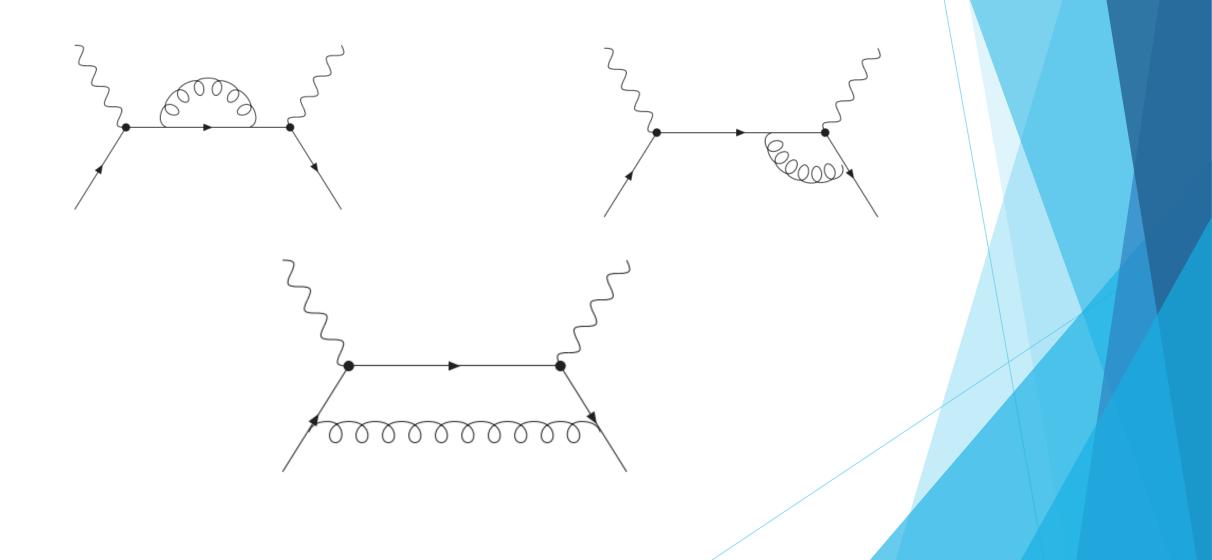
The cancelation of divergences occurs if

$$\mathcal{C}^j_{coll.}(x) = \sum_i \int_{-1}^1 K^{ij}(y,x) \mathcal{C}^i_0(y) dy$$

$$T^q = C_0^q + C_1^q + \frac{1}{2} \ln\left(\frac{|Q^2|}{\mu_F^2}\right) \cdot C_{coll}^q - \text{Renormalized} \text{hard part}$$

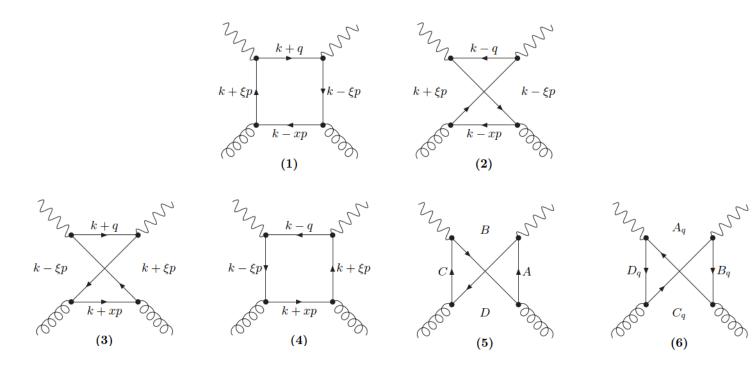
Oskar Grocholski's Master thesis (still in preparation)

Getting the coefficients C_1^q , C_{coll}^q



Gluon sector

In the gluon sector there are also coefficients of that type that require more work:



Conclusions

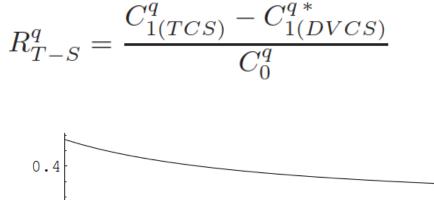
$$C^q_{0(DVCS)} = C^q_{0(TCS)}^*$$

$$C^q_{coll(DVCS)} = C^q_{coll(TCS)}^*$$

$$\frac{C_{1(TCS)}^{q} * - C_{1(DVCS)}^{q}}{\frac{e^{2}\alpha_{S}C_{F}}{4\pi}} = \frac{1}{x - \xi + i\varepsilon} \left[\left(3 - 2\log 2 + 2\log |1 - \frac{x}{\xi}| \right) (i\pi) + \pi^{2} \left(1 + \theta(x - \xi) - \theta(-x + \xi) \right) \right] \\ + \frac{1}{x + \xi - i\varepsilon} \left[\left(3 - 2\log 2 + 2\log |1 + \frac{x}{\xi}| \right) (i\pi) + \pi^{2} \left(1 + \theta(-x - \xi) - \theta(x + \xi) \right) \right]$$
sizable corrections, be careful with universality

B. Pire, L. Szymanowski, and J. Wagner. NLO corrections to timelike, spacelike and double deeply virtual Compton scattering. *Phys. Rev. D*, 83:034009, 2011.

Conclusions



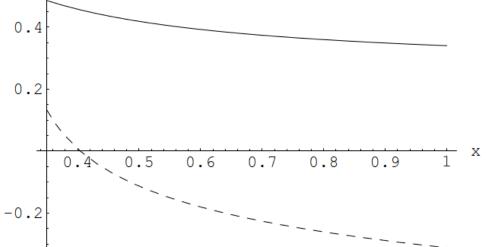


Figure 8: Real (solid line) and imaginary (dashed line) part of the ratio R_{T-S}^q of difference of NLO quark coefficient functions to the LO coefficient functions in the TCS and DVCS as a function of x

Future perspectives

Phenomenology study of these NLO corrections

- PARTONS platform: open-source C++ program
 - Contains several GPD models
 - Leading twist... but higher twists will be included in near future
 - Can be used by theorists and experimentalists
 - Provides x-secs, Compton form factors, etc

To download and for tutorials http://partons.cea.fr

For detail description of architecture see:

PARtonic Tomography Of Nucleon Software

Eur. Phys. J. C78 (2018), 478