JAM-small x Helicity Phenomenology

Daniel Adamiak¹

Yu. Kovchegov¹ W. Melnitchouk² D. Pitonyak³ N. Sato² M. Sievert⁴

¹Department of Physics, The Ohio State University

² lefferson Lab

³Lebanon Valley College

⁴New Mexico State University

HUGS 2021

• Using first principles QCD, we are able to describe the small-*x* evolution of helicity PDFs

- Using first principles QCD, we are able to describe the small-*x* evolution of helicity PDFs
- This evolution requires that that an initial condition be fit to data

- Using first principles QCD, we are able to describe the small-*x* evolution of helicity PDFs
- This evolution requires that that an initial condition be fit to data
- We use the JAM framework to determine the parameters of the initial condition

- Using first principles QCD, we are able to describe the small-*x* evolution of helicity PDFs
- This evolution requires that that an initial condition be fit to data
- We use the JAM framework to determine the parameters of the initial condition
- Resulting in the successful description of existing proton and neutron g1 structure functions

- Using first principles QCD, we are able to describe the small-*x* evolution of helicity PDFs
- This evolution requires that that an initial condition be fit to data
- We use the JAM framework to determine the parameters of the initial condition
- Resulting in the successful description of existing proton and neutron *g*1 structure functions
- as well as predictions for measurements to be made at the EIC

Proton Spin Puzzle and hPDFs

Jaffe-Manohar Spin Sum Rule:

$$\frac{1}{2} = \boldsymbol{S_q} + \boldsymbol{L_q} + \boldsymbol{S_G} + \boldsymbol{L_G}$$

Proton Spin Puzzle and hPDFs

Jaffe-Manohar Spin Sum Rule:

$$\frac{1}{2} = \boldsymbol{S}_{\boldsymbol{q}} + \boldsymbol{L}_{\boldsymbol{q}} + \boldsymbol{S}_{\boldsymbol{G}} + \boldsymbol{L}_{\boldsymbol{G}}$$

• Q^2 resolution at which we probe the proton

• $x \propto \frac{1}{5}$, we need theory to find the dependence of

Calculating Helicity Distributions

Helicity distributions are computed from the polarized dipole amplitude

$$\Delta q(x, Q^{2}) + \Delta \bar{q}(x, Q^{2}) = \frac{N_{c}}{2\pi^{3}} \int_{0}^{\ln \frac{Q^{2}}{x\hbar^{2}}} d\eta \int_{\max\{0, \eta - \ln \frac{1}{x}\}}^{\eta} ds_{10} \ G_{q}(s_{10}, \eta)$$

$$G = 1$$

• Rapidity, $\eta = \ln \frac{zs}{\Lambda^2}$, z = momentum fraction of quark

• Log of transverse momentum, $s_{10} = \ln \frac{1}{x_{10}^2 \Lambda^2}$, x_{10} separation between quarks

The polarized dipole amplitude evolves through small-x helicity (KPS¹) evolution

In the large N_c limit, evolution closes:

$$G_q(s_{10},\eta) = G_q^{(0)}(s_{10},\eta) + \frac{\alpha_s N_c}{2\pi} \int_{s_{10}}^{\eta} d\eta' \int_{s_{10}}^{\eta'} ds_{21} \left[\Gamma_q(s_{10},s_{21},\eta') + 3G_q(s_{21},\eta') \right]$$

¹(Kovchegov, Pitonyak, Sievert: (2016), (2017), (2017), (2017), (2017); Kovchegov & Sievert: (2019);Kovchegov & Cougoulic :(2019))

Kovchegov Pitonyak Sievert (KPS) Evolution

The polarized dipole amplitude evolves through small-x helicity (KPS¹) evolution

In the large N_c limit, evolution closes:

$$G_q(s_{10},\eta) = G_q^{(0)}(s_{10},\eta) + \frac{\alpha_s N_c}{2\pi} \int_{s_{10}}^{\eta} d\eta' \int_{s_{10}}^{\eta'} ds_{21} \left[\Gamma_q(s_{10},s_{21},\eta') + 3G_q(s_{21},\eta') \right]$$

Γ_q(s₁₀, s₂₁, η') is an auxiliary function which obeys a separate integral equation that mixes with G.

¹(Kovchegov, Pitonyak, Sievert: (2016), (2017), (2017), (2017), (2017); Kovchegov & Sievert: (2019);Kovchegov & Cougoulic :(2019))

Kovchegov Pitonyak Sievert (KPS) Evolution

The polarized dipole amplitude evolves through small-x helicity (KPS¹) evolution

In the large N_c limit, evolution closes:

$$G_q(s_{10},\eta) = G_q^{(0)}(s_{10},\eta) + \frac{\alpha_s N_c}{2\pi} \int_{s_{10}}^{\eta} d\eta' \int_{s_{10}}^{\eta'} ds_{21} \left[\Gamma_q(s_{10},s_{21},\eta') + 3G_q(s_{21},\eta') \right]$$

- Γ_q(s₁₀, s₂₁, η') is an auxiliary function which obeys a separate integral equation that mixes with G.
- $G_q^{(0)}(s_{10},\eta)$ is a flavour dependent initial condition that is fit to data.

•
$$G_q^{(0)}(s_{10},\eta) = a_q \ \eta + b_q \ s_{10} + c_q$$

¹(Kovchegov, Pitonyak, Sievert: (2016), (2017), (2017), (2017), (2017); Kovchegov & Sievert: (2019);Kovchegov & Cougoulic :(2019))

$$S_q(Q^2) = rac{1}{2} \int\limits_0^1 dx \; \sum_q (\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2))$$

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \sum_q (\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2))$$

$$\uparrow$$

$$\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2) = \frac{N_c}{2\pi^3} \int d\eta \int ds_{10} \ G_q(s_{10}, \eta)$$

$$S_{q}(Q^{2}) = \frac{1}{2} \int_{0}^{1} dx \sum_{q} (\Delta q(x, Q^{2}) + \Delta \bar{q}(x, Q^{2}))$$

$$\uparrow$$

$$\Delta q(x, Q^{2}) + \Delta \bar{q}(x, Q^{2}) = \frac{N_{c}}{2\pi^{3}} \int d\eta \int ds_{10} \ G_{q}(s_{10}, \eta)$$

$$\uparrow$$

$$G_{q}(s_{10}, \eta) = G_{q}^{(0)}(s_{10}, \eta) + \frac{\alpha_{s} N_{c}}{2\pi} \int_{s_{10}}^{\eta} d\eta' \int_{s_{10}}^{\eta'} ds_{21} \left[\Gamma_{q}(s_{10}, s_{21}, \eta') + 3G_{q}(s_{21}, \eta') \right]$$

$$\Delta q^+ = \Delta q + \Delta ar q$$

$$\Delta q^+ = \Delta q + \Delta ar q$$

• Three relevant hPDFs in DIS: $\Delta u^+, \Delta d^+$ and Δs^+

$$\Delta q^+ = \Delta q + \Delta ar q$$

- Three relevant hPDFs in DIS: $\Delta u^+, \Delta d^+$ and Δs^+
- Three observables that contain these hPDFs in linearly independent combinations: g_1^p, g_1^n and $g_1^{\gamma Z}$.

$$\Delta q^+ = \Delta q + \Delta ar q$$

- Three relevant hPDFs in DIS: $\Delta u^+, \Delta d^+$ and Δs^+
- Three observables that contain these hPDFs in linearly independent combinations: g_1^p, g_1^n and $g_1^{\gamma Z}$.
- Only have data for g_1^p and g_1^n

$$g_1^p(x, Q^2) = \frac{1}{2} \sum_q Z_q^2 \Delta q^+(x, Q^2)$$

Observables predicted by our formalism: Double spin asymmetries in DIS

$$A_{||} = rac{\sigma^{\uparrow \Downarrow} - \sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\uparrow \Uparrow}} \propto A_1 \propto g_1$$

 $\uparrow (\downarrow)$ is Positive (negative) helicity electron $\Uparrow (\Downarrow)$ is Positive (negative) helicity proton A_1 is a virtual photoproduction asymmetry

Monte-Carlo generation of parameters that tend towards minimum χ^2

Fitting to data

Fitting to data

- First fit of small-*x* theory to polarized data
- With a cut of x < 0.1

Fitting to data

- First fit of small-*x* theory to polarized data
- With a cut of x < 0.1

•
$$\chi^2 / npts = 1.01$$

Predictions for Electron Ion Collider

- Predict large negative g₁
- Significant improvement in error from EIC

- We have a theory that describes the hPDFs in terms of the polarized dipole amplitude
- Performed the first small-x fit of world polarized DIS data
- Predicted g_1 down to $x = 10^{-5}$
- While maintaining control over the uncertainty
- In the future, look at other observables (SIDIS) to nail down hPDFs separately and compute total spin contribution

Thank you!