The GeN-RP Experiment and Neutron Electromagnetic Form Factor Measurements on the SBS at JLab

John Boyd

University of Virginia Department of Physics

> e-HUGS Seminar June 17, 2021

Outline

- The Super BigBite Spectrometer
- GEn-RP Experiment on the SBS
- ✤ GEM Detectors
- UV Readout GEM Detectors

Motivation

Form Factors

- Important observables for characterization of the nucleon
- Describe the spatial distribution of electric charge and magnetization
- From $G_E(Q^2=0)$ and $G_M(Q^2=0)$ we can obtain the electric charge and magnetic moment
- From the slope of $G_E(Q^2=0)$ and $G_M(Q^2=0)$ we can obtain the electric radius and magnetic radius

High Momentum-transfer *Q*² Measurements

- Test the validity of predictions such as quark models and pQCD
- Comparisons to Lattice QCD
- Provide input to DVCS measurements
- Probing deeper into GPDs

The Super BigBite Spectrometer (SBS)

The SBS (Jefferson Lab's Experimental Hall A) is a large-aperture, high-acceptance detector package that will measure elastic electromagnetic form factors at the highest Q² momentum-transfer values and highest level of precision yet to be achieved.

- Solid angle acceptance: ~75 msr
- Designed for large amounts of particles and high background rates (~1 MHz/cm²)
- Will be arranged for the following 12 GeV program experiments: G_Mⁿ, G_Eⁿ, G_Eⁿ, G_Eⁿ-RP, nTPE, and G_E^pV

GEn-RP Experiment on the SBS at JLab

- GEn-RP (2021) will measure G_E^n/G_M^n using a polarized electron beam and an unpolarized deuterium target at a Q^2 of 4.5 (GeV/c)².
- Using two recoil polarimetry techniques:
 - $\Box \quad \text{Charge-Exchange } np \to pn$
 - $\Box \quad \text{Conventional: } np \to np$

GEn-RP Experiment on the SBS at JLab

GEn-RP Experiment on the SBS at JLab

Scattered electron will be measured in BigBite (momentum, direction, reaction vertex, trigger time correlation)

Neutron arm/Polarimeter (position, time-of-flight, and spin precession for recoiling nucleon):

Charge-Exchange: $np \rightarrow pn$

- Steel Analyzer (passive)
- GEM tracking and HCal measurement of forward protons
- GEM proton veto

Scattering: $np \rightarrow np$

- Plastic CH Analyzer (Active)
- Large-angle recoil protons → side detectors
- Forward neutrons → HCal

GEn-RP Polarimeter

Low momentum, large-angle, recoiling protons after np \rightarrow np

SBS Charged Particle Tracking With GEMs

Gas Electron Multiplier (GEM) Detectors

GEM detectors: cost effective solution for high resolution tracking under high rates over large areas.

- High-rate capability (> 100s of MHz/cm²)
- High position resolution (< 70 μ m)
- Large area coverage (10 100's of m²)
- Low thickness (~0.5% radiation length)

GEM Detectors - Readouts

- The avalanche cascades through the foil layers until it is read out on the **Readout Plane**.
- Readout plane consists of strips which detect incident particles.
- In an X-Y configuration the strips are orthogonal to each other.

"Typical" X-Y Readout Planes

GEM Detectors on the SBS (GEn-RP)

Front and Rear GEM trackers are UVa-built triple-foil GEM modules.

<u>A need for new & additional GEMs in the SBS</u>

- SBS: high particle numbers and thus higher rates.
- Higher particle numbers & higher rates \rightarrow harder parsing/analysis

<u>A solution: additional GEMs with non "X-Y" readouts \rightarrow "U-V" GEMs</u>

- Introduce trackers with a non-orthogonal readout plane.
- Coincidences must now correlate across readouts with orthogonal X-Y strips and non-orthogonal U-V strips.
- Thus, reducing combinatorics
- 4 U-V GEM modules being built at UVa to be installed at JLab

Comparison of UV and XY Readout Planes

<u>"UV" Readout Plane</u>

GEM Components

XY GEM Foil

*Manufactured by TS-DEM group at CERN, based on the UVa design

UV GEM Preliminary Data

Completed UV chamber on cosmic test stand

Summary

- EMFFs serve key roles in the investigation of nucleon structure and GPDs.
- Super Bigbite Spectrometer: Upcoming series of high Q² experiments to measure various form factors at highest levels of precision.
- GEM detectors are principal components for particle tracking/measurement.
- Two types of GEMs have been developed by our research team.
- In the final stages of development/test of the UV GEM set of detectors.
- SBS experiments set to begin later this year, starting with GMn in September

Acknowledgements

- My advisor Nilanga Liyanage
- Research scientists Kondo Gnanvo, Huong Nguyen
- Post-docs Xinzhan Bai and Salina Ali
- Graduate students John Matter, Siyu Jian, Anuruddha Rathnayake, Sean Jeffas, Bhashitha Thuthimal Dharmasena, and Vimukthi Gamage.
- The SBS Collaboration
- The Department of Energy

UV GEM Construction/Assembly/Test

U-V Frames Pre-Assembly

IIVERSITY VIRGINIA

Testing a UV GEM foil under high voltage in a dry nitrogen environment

UV frame installed onto a mechanically-stretched GEM foil

UV GEM Construction/Assembly/Test

Assembled UV GEM Chamber on a cosmic test stand

