Semi-Exclusive Double Drell-Yan factorization and GTMDs

36th Annual Hampton University Graduate Studies (HUGS) June 2021 Jefferson Lab

Patricia Andrea Gutiérrez García Work in progress with Miguel Echevarría and Ignazio Scimemi Complutense University of Madrid

1

Outline

- Goal of the study
- SCET Intro
- Factorization Theorem
 - SCET Current operator
 - GTMDs, Soft Factor
- Remove of overlapping and rapidity divergences
- Conclusions

Motivation

- Understanding multi dimensional inner structure of strongly interacting systems
- GTMDs absorb both GPDs and TMDs

• How to obtain GTMDs in a cross-section using **SCET**?

 $\pi(p_b) + N(p_a, \lambda_a) \rightarrow \gamma_1^*(q_1, \lambda_1) + \gamma_2^*(q_2, \lambda_2) + N'(p'_a, \lambda'_a)$

Soft Collinear Effective Theory

• Light-cone coordinates:

$$p^{\mu} = (n \cdot p)\frac{\bar{n}^{\mu}}{2} + (\bar{n} \cdot p)\frac{n^{\mu}}{2} + p^{\mu}_{\perp} \equiv p^{\mu}_{+} + p^{\mu}_{-} + p^{\mu}_{\perp} \qquad \text{with} \qquad n_{\mu} = (1, 0, 0, 1) \quad \text{and} \quad \bar{n}_{\mu} = (1, 0, 0, -1) .$$

• Dominant contributions from particles with collineal, anticollineal and soft momentum

$$\mathcal{L}(\phi) = \underbrace{\mathcal{L}(\phi_c)}_{\equiv \mathcal{L}_c} + \underbrace{\mathcal{L}(\phi_{\bar{c}})}_{\equiv \mathcal{L}_{\bar{c}}} + \underbrace{\mathcal{L}(\phi_s)}_{\equiv \mathcal{L}_s} + \mathcal{L}_{c+s}(\phi_c, \phi_{\bar{c}}, \phi_s)$$

- Valid at small $q_T << Q$
- Each of the dominant regions have a dedicated field

Soft Collinear Effective Theory

• Each field scales differently: **decoupling** of SCET modes

Hard	$q^{\mu} \sim Q(1,1,\lambda)$	<i>a</i> _
Collinear	$k^{\mu} \sim Q(\lambda^2, 1, \lambda)$	$\lambda = \frac{q_T}{r}$
Anti-collinear	$k^{\mu} \sim Q(1,\lambda^2,\lambda)$	p_a^+
Soft	$k^{\mu} \sim Q(\lambda, \lambda, \lambda)$	

• After matching: only effective operator(s) joins the fields:

• Wilson Line (gauge invariance):

$$S_n^T = T_{sn} S_n$$
$$S_n(x) = P \exp\left[ig \int_{-\infty}^0 dsn \cdot A_s^a(x+sn)t^a\right]$$

• Cross-section factorization

SCET factorization

• Semi-Exclusive Double Drell-Yan cross-section:

 $\frac{d\sigma}{d^4q_1d^4q_2} \propto \sum_X \int dz_{1,2,3} e^{-iq_1z_1 - iq_2z_2 + iq_1z_3} \left\langle \Pi N | \overline{T} \{ J^{\dagger \alpha}(z_1) J^{\dagger \beta}(z_2) \} | XN' \right\rangle \times \left\langle XN' | T\{ J^{\mu}(z_3) J^{\nu}(0) \} | \Pi N \right\rangle$

- Matching to SCET current
- Particles assigned to sectors $N \to n, \Pi \to \bar{n}, X \to s, \bar{n}$

$$\sum_{X} |X\rangle \langle X| = \sum_{X_{\bar{n}}} |X_{\bar{n}}\rangle \langle X_{\bar{n}}| \times \sum_{X_s} |X_s\rangle \langle X_s| = 1$$

• Decoupling of SCET sectors after fierzing:

$$\frac{d\sigma}{d^4q_1d^4q_2} = \int d^4z_{1,2,3}e^{-iq_1z_1 - iq_2z_2 + iq_1z_3} \sum_{\Gamma} \sum_{\Gamma'} C_{\Gamma}C_{\Gamma'} H(Q^2/\mu^2) \Phi_{DDY}(z) f_{pion}(z) f_{NN'}(0,z_3) f_{N'N}(z_1,z_2)$$

SCET factorization: GTMDs

• Factorized cross-section:

$$\frac{d\sigma}{dx_{1,2}dy_{1,2}d\vec{q}_{1,2\perp}} \propto \sum_{\Gamma} \sum_{\Gamma'} C_{\Gamma} C_{\Gamma'} H(Q^2/\mu^2) \int \frac{d^2 \vec{b}_{1,2,3\perp}}{(2\pi)^6} e^{-i\vec{q}_{1\perp}\vec{b}_{1\perp} - i\vec{q}_{2\perp}\vec{b}_{2\perp} + i\vec{q}_{1\perp}\vec{b}_{3\perp}} \tilde{\Phi}_{DDY}(\{\vec{b}_{\perp}\}) \tilde{f}_{pion}(\{y,\vec{b}_{\perp}\}) \tilde{f}_{NN'} \tilde{f}_{N'N}(\{x,\vec{b}_{\perp}\})$$

where:

$$\tilde{f}(x;\vec{b}_{\perp}) = \int d^2 \vec{k}_{\perp} e^{i\vec{k}_{\perp}\cdot\vec{b}_{\perp}} f(x;\vec{k}_{\perp})$$

• Two pure GTMDs evaluated in different positions (unsubtracted, with rapidity divergences)

One-loop calculation in Echevarría Et. al. Physics Letters B, 759, 336-341

$$f_{pp',\lambda\lambda'}(P,\Delta,x,\vec{k}_{\perp}) = \frac{1}{2} \int \frac{dz^{-}d^{2}\vec{z}_{\perp}}{(2\pi)^{3}} e^{i(z^{-}k^{+}/2 - \vec{z}\cdot\vec{k}_{\perp})} (p',\lambda') \bar{q} W_{n}(-z/2) \Gamma W_{n}^{\dagger} q(z/2) (p,\lambda)|_{z^{+}=0}$$

$$P = (p+p')/2 \qquad \Delta = p - p' \qquad k^{+} = xp^{+}$$

7

SCET factorization: Soft factor

• Factorized cross-section:

$$\frac{d\sigma}{dx_{1,2}dy_{1,2}d\vec{q}_{1,2\perp}} \propto \sum_{\Gamma} \sum_{\Gamma'} C_{\Gamma} C_{\Gamma'} H(Q^2/\mu^2) \int \frac{d^2 \vec{b}_{1,2,3\perp}}{(2\pi)^6} e^{-i\vec{q}_{1\perp}\vec{b}_{1\perp} - i\vec{q}_{2\perp}\vec{b}_{2\perp} + i\vec{q}_{1\perp}\vec{b}_3} \left(\tilde{\Phi}_{DDY}(\{\vec{b}_{\perp}\}) \tilde{f}_{pion}(\{y,\vec{b}_{\perp}\}) \tilde{f}_{NN'} \tilde{f}_{N'N}(\{x,\vec{b}_{\perp}\}) \right)$$

Figure 2: Double Wilson Loop Soft Factor. Vladimirov, A. (2018) Journal of High Energy Physics, 2018(4), 1-46

• Soft factor depends on b_T:

 $\tilde{\Phi}_{DDY}(\vec{b}_{1\perp}, \vec{b}_{2\perp}, \vec{b}_{3\perp}) = \left\langle 0 | S_n^{T\dagger}(\vec{b}_{1\perp}) S_{\bar{n}}^T(\vec{b}_{1\perp}) S_{\bar{n}}^{T\dagger}(\vec{b}_{2\perp}) S_n^T(\vec{b}_{2\perp}) S_n^T(\vec{b}_{3\perp}) S_n^T(\vec{b}_{3\perp}) S_n^{T\dagger}(0) S_{\bar{n}}^T(0) | 0 \right\rangle$

Overlapping regions and divergences

 $d\sigma^{[1,11,1]} \propto f^{[1]}_{pion}(\{y,\vec{b}_{\perp}\}) \Phi_{11}(\{b\}) f^{[1]}_{NN'} f^{[1]}_{N'N}(\{x,\vec{b}_{\perp}\})$

- Rapidity divergences
- When doing loop calculations: remove overlapping between regions
- Subtracted cross-section (without rapidity divergences):

$$d\sigma_{DDY}^{[1,11,1]}{}_{sub}(\{b\}) \propto H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]}}{\Phi_{11}} \Phi_{11}(\{b\}) \frac{\hat{f}_{NN'}^{[1]} \hat{f}_{N'N}^{[1]}(\{x,\vec{b}_{\perp}\})}{\Phi_{DY}(\vec{b}_{1\perp},\vec{b}_{2\perp})\Phi_{DY}(0,\vec{b}_{3\perp})} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]}}{\sqrt{\Phi_{11}}} \frac{\sqrt{\Phi_{11}}}{\sqrt{\Phi_{DY}(\vec{b}_{1\perp},\vec{b}_{2\perp})}\sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} \frac{\hat{f}_{NN'}^{[1]} \hat{f}_{N'N}^{[1]}(\{x,\vec{b}_{\perp}\})}{\sqrt{\Phi_{DY}(\vec{b}_{1\perp},\vec{b}_{2\perp})}\sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]}}{\sqrt{\Phi_{11}}} \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{2\perp},\vec{b}_{2\perp})}{\sqrt{\Phi_{DY}(\vec{b}_{1\perp},\vec{b}_{2\perp})}\sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{1\perp},\vec{b}_{2\perp})}{\sqrt{\Phi_{DY}(\vec{b}_{1\perp},\vec{b}_{2\perp})}\sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{1\perp},\vec{b}_{2\perp})}{\sqrt{\Phi_{DY}(\vec{b}_{1\perp},\vec{b}_{2\perp})}\sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{1\perp},\vec{b}_{2\perp})} \sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{2\perp},\vec{b}_{2\perp})} \sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})} + H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{2\perp},\vec{b}_{2\perp})} \sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{2\perp},\vec{b}_{2\perp},\vec{b}_{2\perp})} \sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} = H(Q^2/\mu^2) \frac{\hat{f}_{pion}^{[1]} (\{x,\vec{b}_{2\perp},\vec{b}_{2\perp},\vec{b}_{2\perp})} \sqrt{\Phi_{DY}(0,\vec{b}_{3\perp})}} + H(Q^$$

 $= H(Q^2/\mu^2) \times 2TMD \times \Phi_{New} \times GTMD * GTMD'$

• New ratio of soft factors term

Conclusions

- First factorization of Semi-Exclusive DDY cross-section into functions with different scales
- Semi-Exclusive DDY factorization gives access to GTMDs (and 2TMD)
- New ratio of soft factors not present before: important for pheno!
- Future work:
 - More complicated structures (color, polarizations)
 - Evolution: *Resummation via RG equations*

THANK YOU FOR YOUR ATTENTION!

36th Annual Hampton University Graduate Studies (HUGS)

Extra slides

SCET factorization

$$\frac{d\sigma}{d^4q_1d^4q_2} = \int d^4z_{1,2,3}e^{-iq_1z_1 - iq_2z_2 + iq_1z_3} \sum_{\Gamma} \sum_{\Gamma'} C_{\Gamma}C_{\Gamma'}H(Q^2/\mu^2)\Phi_{DDY}(z)f_{pion}(z)f_{NN'}(0,z_3)f_{N'N}(z_1,z_2)$$

Multipole expansion + FTs properties lead to:

$$\frac{d\sigma}{dx_{1,2}dy_{1,2}d\vec{q}_{1,2\perp}} \propto \sum_{\Gamma} \sum_{\Gamma'} C_{\Gamma} C_{\Gamma'} H(Q^2/\mu^2) \int \frac{d^2 \vec{b}_{1,2,3\perp}}{(2\pi)^6} e^{-i\vec{q}_{1\perp}\vec{b}_{1\perp} - i\vec{q}_{2\perp}\vec{b}_{2\perp} + i\vec{q}_{1\perp}\vec{b}_{3\perp}} \tilde{\Phi}_{DDY}(\{\vec{b}_{\perp}\}) \tilde{f}_{pion}(\{y,\vec{b}_{\perp}\}) \tilde{f}_{NN'} \tilde{f}_{N'N}(\{x,\vec{b}_{\perp}\})$$

Factorized cross-section in impact parameter space with:

$$\tilde{f}(x;\vec{b}_{\perp}) = \int d^2 \vec{k}_{\perp} e^{i \vec{k}_{\perp} \cdot \vec{b}_{\perp}} f(x;\vec{k}_{\perp}) \quad \text{and}$$

- $\begin{array}{ll} \Phi_{\rm DDY} & \mbox{ Soft factor with 8 Wilson lines} \\ f_{pion} & \mbox{ Naive Double TMD} \\ f_{NN'}f_{N'N} & \mbox{ Naive Two GTMDs} \end{array}$

GTMDs

• General correlator for GTMDs:

$$W_{\lambda\lambda'}^{[\Gamma],0}(P,\Delta,x,\vec{k}_{\perp}) = \frac{1}{2} \int \frac{dz^- d^2 \vec{z}_{\perp}}{(2\pi)^3} e^{i(z^-k^+/2 - \vec{z}\cdot\vec{k}_{\perp})} \langle p',\lambda' | \bar{q} W_n(-z/2) \Gamma W_n^{\dagger} q(z/2) | p,\lambda \rangle |_{z^+=0}$$

• Subtracted correlator: Echevarría Et. al. Physics Letters B, 759, 336-341 [1] $\phi_{\lambda\lambda'}$ [Γ],q

Free from rapidity divergences

$$W_{\lambda\lambda'}^{[\Gamma],q} = \frac{1}{2} \int \frac{dz^{-}d^{2}z_{\perp}}{(2\pi)^{3}} e^{+i\left(\frac{1}{2}z^{-}\bar{k}^{+}-\boldsymbol{z}_{\perp}\cdot\bar{\boldsymbol{k}}_{\perp}\right)} \phi_{\lambda\lambda'}^{[\Gamma],q}(0,z^{-},\boldsymbol{z}_{\perp}) S^{\frac{1}{2}}(z_{T})$$

• Soft factor:

$$S(z_T) = \frac{\operatorname{Tr}_c}{N_c} \langle 0 | \mathcal{S}_n^{\dagger} \left(-\frac{z}{2} \right) \, \mathcal{S}_{\bar{n}} \left(-\frac{z}{2} \right) \, \mathcal{S}_{\bar{n}}^{\dagger} \left(\frac{z}{2} \right) \, \mathcal{S}_n \left(\frac{z}{2} \right) \left| 0 \right\rangle \Big|_{z^{\pm} = 0}$$

Exclusive DDY

• GTMDs: Exclusive Double Drell-Yan

 $\pi(p_b) + N(p_a, \lambda_a) \to \gamma_1^*(q_1, \lambda_1) + \gamma_2^*(q_2, \lambda_2) + N'(p'_a, \lambda'_a)$

• Amplitude calculation at LO by Bhattacharya et.al.

ure 2: Exclusive DDY. Bhattacharya, S., Metz, A., & Zhou, J. (2017) Physics Letters B, 771, 396-400 [2]

$$d\sigma_{\lambda_{a},\lambda_{a}'}^{\lambda_{1},\lambda_{2}} = \frac{\pi}{2s^{3/2}} \frac{1+\xi_{a}}{1-\xi_{a}} |\mathcal{T}_{\lambda_{a},\lambda_{a}'}^{\lambda_{1},\lambda_{2}}|^{2} \delta(p_{a}'^{0}+q_{1}^{0}+q_{2}^{0}-\sqrt{s}) \\ \times \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}},$$

Exclusive DDY

• GTMDs: Exclusive Double Drell-Yan

 $\pi(p_b) + N(p_a, \lambda_a) \to \gamma_1^*(q_1, \lambda_1) + \gamma_2^*(q_2, \lambda_2) + N'(p'_a, \lambda'_a)$

• Amplitude calculation at LO by Bhattacharya et.al.

Figure 2: Exclusive DDY. Bhattacharya, S., Metz, A., & Zhou, J. (2017) Physics Letters B, 771, 396-400 [2]

$$\begin{aligned} \mathcal{T}^{\mu\nu}_{\lambda_{a},\lambda_{a}'} &= i \sum_{q,q'} e_{q} e_{q}' e^{2} \frac{(2\pi)^{4}}{N_{c}} \int d^{2} \vec{k}_{a\perp} \int d^{2} \vec{k}_{b\perp} \delta^{(2)} \left(\frac{\Delta \vec{q}_{\perp}}{2} - \vec{k}_{a\perp} - \vec{k}_{b\perp} \right) \Phi^{q'q}_{\pi}(x_{b}, \vec{k}_{b\perp}^{2}) \\ & \left[-i \varepsilon^{\mu\nu}_{\perp} \left(W^{qq'}_{\lambda_{a},\lambda_{a}'}(x_{a}, \vec{k}_{a\perp}) - W^{qq'}_{\lambda_{a},\lambda_{a}'}(-x_{a}, -\vec{k}_{a\perp}) \right) \right. \\ & \left. - g^{\mu\nu}_{\perp} \left(W^{qq'}_{\lambda_{a},\lambda_{a}'}(x_{a}, \vec{k}_{a\perp}) + W^{qq'}_{\lambda_{a},\lambda_{a}'}(-x_{a}, -\vec{k}_{a\perp}) \right) \right], \end{aligned}$$

SCET factorization: 2TMD

• Factorized cross-section:

$$\frac{d\sigma}{dx_{1,2}dy_{1,2}d\vec{q}_{1,2\perp}} \propto \sum_{\Gamma} \sum_{\Gamma'} C_{\Gamma} C_{\Gamma'} H(Q^2/\mu^2) \int \frac{d^2 \vec{b}_{1,2,3\perp}}{(2\pi)^6} e^{-i\vec{q}_{1\perp}\vec{b}_{1\perp} - i\vec{q}_{2\perp}\vec{b}_{2\perp} + i\vec{q}_{1\perp}\vec{b}_{3\perp}} \tilde{\Phi}_{DDY}(\{\vec{b}_{\perp}\}) \tilde{f}_{NN'} \tilde{f}_{N'N}(\{x,\vec{b}_{\perp}\}) \tilde{f}_{NN'} \tilde{f}_{N'N'} \tilde{f}_{N'N'}(\{x,\vec{b}_{\perp}\}) \tilde{f}_{NN'} \tilde{f}_{N'N'}(\{x,\vec{b}_{\perp}\}) \tilde$$

• Pure Double TMDPDF (unsubtracted, with rapidity divergences):

Buffing, M. G., Diehl, M., & Kasemets, T. (2018). Journal of High Energy Physics, 2018(1), 1-112 [4]

$$\tilde{f}_{pion}(\{y, \vec{b}_{\perp}\}) = \prod_{j} \int \frac{dr_{j}^{+}}{2\pi} e^{-ir_{j}^{+}y_{j}p_{b}^{-}} \left\langle \Pi | \bar{\chi}_{\bar{n}}(r_{2}^{+}, 0^{-}, \vec{b}_{2\perp}) \Gamma^{\mu} \chi_{\bar{n}}(r_{1}^{+}, 0^{-}, \vec{b}_{1\perp}) \bar{\chi}_{\bar{n}}(r_{3}^{+}, 0^{-}, \vec{b}_{3\perp}) \Gamma^{'\beta} \chi_{\bar{n}}(0) | \Pi \right\rangle$$
where $j = 1, ..., 3$ and $y_{3} = -y_{1}$

Color

• Consider color structure

 $f_{pion}^{[d_4,\dots,d_1]} \propto \left\langle \Pi | \bar{\chi}_{\bar{n}}^{d_2}(r_2^+,0^-,\vec{b}_{2\perp}) \Gamma^{\mu} \chi_{\bar{n}}^{d_1}(r_1^+,0^-,\vec{b}_{1\perp}) \bar{\chi}_{\bar{n}}^{d_3}(r_3^+,0^-,\vec{b}_{3\perp}) \Gamma^{'\beta} \chi_{\bar{n}}^{d_4}(0) | \Pi \right\rangle$

 $f_{NN'}f_{N'N}^{[a_4,\dots,a_1]} \propto \left\langle N|\bar{\chi}_n^{a_1}(0^+,r_1^-,\vec{b}_{1\perp})\Gamma^{\alpha}\chi_n^{a_2}(0^+,r_2^-,\vec{b}_{2\perp})|N'\right\rangle \left\langle N'|\bar{\chi}_n^{a_4}(0)\Gamma'^{\nu}\chi_n^{a_3}(0^+,r_3^-,\vec{b}_{3\perp})|N\rangle$

$$\Phi_{DDY}^{a_1,\dots,a_4,b_4,\dots,b_1}(\{b\}) = \left\langle 0|S_n^{T\dagger a_1}S_{\bar{n}}^{Td_1}(\vec{b}_{1\perp})S_{\bar{n}}^{T\dagger d_2}S_n^{Ta_2}(\vec{b}_{2\perp})S_{\bar{n}}^{T\dagger d_3}S_n^{Ta_3}(\vec{b}_{3\perp})S_n^{T\dagger a_4}S_{\bar{n}}^{Td_4}(0)|0\right\rangle$$

Color

- Obtain valid color structures using projectors
- Cross-section:

$$d\sigma \propto \left(f_{pion}^{[1]}(\{y, \vec{b}_{\perp}\}), f_{pion}^{[8]}(\{y, \vec{b}_{\perp}\}) \right) \times \left(\begin{array}{c} \Phi_{11}(\{b\}) & \Phi_{18}(\{b\}) \\ \Phi_{81}(\{b\}) & \Phi_{88}(\{b\}) \end{array} \right) \times \left(\begin{array}{c} f_{NN'}^{[1]}f_{N'N}^{[1]}(\{x, \vec{b}_{\perp}\}) \\ 0 \end{array} \right)$$

• Singlet term:

$$d\sigma^{[1,11,1]} \propto f^{[1]}_{pion}(\{y,\vec{b}_{\perp}\})\Phi_{11}(\{b\})f^{[1]}_{NN'}f^{[1]}_{N'N}(\{x,\vec{b}_{\perp}\})$$

• Up until now: un-subtracted terms

Color

- Consider DPS color structure
- DPS projectors to get singlet states:

$$I_1 = \frac{\delta_{a_1 a_4} \delta_{a_2 a_3}}{N_c^2} \qquad \qquad I_8 = \frac{2t_{a_1 a_4}^A t_{a_2 a_3}^A}{N_c \sqrt{N_c^2 - 1}}$$

• Soft factor:

$$\Phi_{MN}(\{b\}) = I_M \times \Phi_{DDY}^{[a_1,\dots,a,4][b_1,\dots,b_4]}(\{b\}) \times I_N$$

with:

$$\begin{split} \Phi_{DDY}^{a_1,\dots,a_4,b_4,\dots,b_1}(\{b\}) &= \left\langle 0|S_n^{T\dagger a_1}S_{\bar{n}}^{Td_1}(\vec{b}_{1\perp})S_{\bar{n}}^{T\dagger d_2}S_n^{Ta_2}(\vec{b}_{2\perp})S_{\bar{n}}^{T\dagger d_3}S_n^{Ta_3}(\vec{b}_{3\perp})S_n^{T\dagger a_4}S_{\bar{n}}^{Td_4}(0)|0\right\rangle \\ \Rightarrow \quad \Phi_{DDY}(\{b\}) &= \begin{pmatrix} \Phi_{11}(\{b\}) & \Phi_{18}(\{b\}) \\ \Phi_{81}(\{b\}) & \Phi_{88}(\{b\}) \end{pmatrix} \end{split}$$