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Background Why is Higgs boson so important?

Why is Higgs boson so important?

o Higgs field is responsible for generating the masses of the elementary particles of
the Standard Model (SM).

@ This occurs through the spontaneous breaking of the electroweak symmetry.

@ Since the confirmation of its existence in 2012, studying its properties became
the main objective of the Higgs physics program.

o Precisely characterizing the properties of the Higgs boson would help us better
understand the nature of spontaneous breaking of electroweak symmetry.,
Yukawa’s couplings?, etc.

LM. Bier et al. JHEP 01, 164, (2014).
2A. M. Sirunyan et al. Phys. Lett. B 778, 101, (2018).
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Background Extreme conditions of matter

External agents

@ So far, all the research referred has focused only on the physics of the Higgs
boson in vacuum (proton-proton collisions).

@ Nevertheless, they can be extended to scenarios where the effects of external
agents could change the global properties of the Higgs boson.?.

o It is important to quantify the effect of these external agents in perturbative
calculations to have clarity on the effects caused by “new physics”.

C“’G. Gamow. Phys. Rev. 7O, 572, (1946).
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New scenarios for Higgs physics

Recent studies show the possibility of quark-gluon plasma (QGP) being produced in

nucleon-nucleon collisions**®
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There is also the possibility of the detection of Higgs bosons in other types of

collisions; for example, in relativistic heavy ion collisions

PHYSICAL REVIEW LETTERS 122, 041803 (2019)

6,7

PHYSICAL REVIEW D 101, 033009 (2020)
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We examine Higgs boson production and decay i heavy-ion collisions at the LHC and future
collders. Owing to the long lifetime of the Higgs boson, ts hadronic decays may experience litle or no
screening from the hot and dense quark-gluon plasma. whereas jets from hard scattering processes and
from decays of the clctrowesk gauge bosons and the top quark suffe significant energy loss. This
distinction can lead (o enhanced signal to background ratios in hadronic decay channels and thus, for
example, provide alterative ways to probe the Yukawa coupling of the Higes boson t the boom
quark and s lifetime.

DO 10.1103PhysRevLet 122041503

nioducionThe successul operstion of the CERN  (EW) gauge bosons and the tp sk, this timescale s

adun Collier (LHC) o 1 e disconery of e
Higas boson, the fina piee of the sandard mode (SM)
s. Precise measurements of the

properties and couplings of the Higgs boson arc now  QGP,will camry information on the Higgs boson. (i) Because.

GPhys, Rev. Lett. 122, 041803, (2019).
7P‘hys. Rev. D 101, 033009, (2020).

ll.lgg,s boson pmducnon in photon-photon interactions with proton,
light-ion, and heavy-ion beams at current and future colliders

David d'Enterria
(CERN. European Organization for Nuclear Research. 1211 Geneve, Switzerand
Daiel E. Martins
UFRJ, Univ Federal do Rio de Janciro, 21941-901 Rio de Janeir, RJ, Brazil

Paricia Rebello Te
ERJ, Univ do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RS, Brazil

® ke

.43 May 2019 accepted 28 January 2020; published 24 February 2020)

pled o propord e CERN el ighumiosy Ly Hado Cllder L LIO, b
h-encrgy LHC (HE-LHC), and the Future Circular Collder (FCC)—is stdied. The cross sections for

the process AAZ(A)H(A), with the fons A suriving the iteraction and the iggs scalar exclusvely

ans computed with MADGRAM 5 modified 0 inlude the comesponding elastc 7 flues, for

e. Kr-Kr, Ar-Ar, 0.0, p-Pb, and pp over the nucleon.nuckeon collision energy range

V55~ 3-100 TeV. Simulation of the  — H — b decay mode—including realitic (misgging and
the i

e the sl compcd 77 6 5. coninsm bu Eroune—save bocn carid . Tokog

born s snorghel el UPCY) e ot At e HLLHC and HELHC, e cllg
o Ak (6316 e KK (125 TV petivly, bk 30
¢ production woud require 200 and 30 imes |

than those planned today at both machines. Factrs of 10 can b gained by running for a yar,athr than

rted luminosities

June 17, 2021



Magnetic fields in relativistic heavy ion collisions

e Very intense in early stages®, eB ~ m2.

o Decrease exponentially, T ~ fm/c.

]/2 T T T
SN_N =200 GeV v

a 2 7
Er:

£ 1) :
Gl

1 m

0.5r 1

00T 02 03 ~0TFs
t, fm/c

Figure: The time evolution of the magnetic field strength eB, at the central point O in
Au-Au collisions with impact parameter b = 4fm in the UrQMD model, in one event (“lev”)
and and averaged over 100 events (“100ev”). The symbols are plotted every At = 0.2fm/c
for Ej,p = 60GeV and At = 0.01fm/c for /Syn = 200GeV.

8V. V. Skokov et al. Nucl. Phys. A 24, 708, (2009).
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Higgs production through gluon fusion

Higgs production through gluon fusion

The production of Higgs bosons through gluon fusion is a highly relevant process
because it corresponds to more than 90% of the cross section at 13 TeV®

gg — H.

This process has the following probability amplitude associated

<p3;+|(p17p,7o',a),(pg,V,U,7b);—>. 1)

At leading order there are two different contributions to the amplitude, i.e. two
Feynman diagrams.

91\1. Tanabashi et al. Phys. Rev. D 98, 03001, (2018).
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(a) Diagram A. (b) Diagram B.

Figure: Feynman diagrams of Higgs production through gluon fusion at LO.
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production through gluon fusion

Effective vertex

These two diagrams could be seen as an “effective vertex” T'*” | where all the
information of the Higgs production process through gluon fusion is contained. The
effective vertex represents a direct coupling between the Higgs and the gluons.

r-Urquiza ( y June 17, 2021



Cross section

The unpolarized cross section is

1 2\ 2
= oz, 20 (8= m5) 3 o apin M1
(2)

with

iM =iT"" (p1, p2)e (p1, o)l (pa, o).
(3)
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production thr

Higgs boson production through gluon fusion in presence of an external
magnetic field

The two different Feynman diagrams in Fig.2 are
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(a) Diagram A. (b) Diagram B.

Figure: Feynman diagrams at leading order process in the presence of an external magnetic
field. The magnetic field is represented by a double line in the fermionic propagators.
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Higgs production through gluon fusion in a magnetic field

The fermionic propagator in the presence of a magnetic field was obtained by
Schwinger (in the configuration space) and is given by'®

Sp () = Oz, y) / (;17’;5? (p)e# =), (4)

where
Qz',2") = exp (—iq/ Au(x)dm“> (5)

it’s known as Schwinger phase, with g the electric charge of the fermion and A, the
potential that generates the magnetic field B.

104, Erdas. Phys. Rev. D 82, 664, (2009).
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Higgs production through gluon fusion in a magnetic field

If the magnetic field defines the z direction, the invariant part of the propagator is'!

B, ™ ds . > o o tan(¢Bs)
S (p) */0 7cos(qu) GXP{ s (mf P —pPL qBs

x [(mf + Ié”) eTHPE 4 cos?qLBs)} ’

where p| and py are the parallel and perpendicular components of the momentum to
the magnetic field and

s = iy'At (7)

1A, Erdas. Phys. Rev. D 82, 664, (2009).
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Higgs production through gluon fusion in a magnetic field

Applying Feynman’s rules to diagram A gives

qB . v qB . qB
it (@, 2) = =TR [ (=igo"t)S} (2.9)(=iger )5S} (y.2) (—ign)S; (z.)]
= —iglg, tr [1°¢"] Qq (e, 1) (1, 2)%(2,2)

4 4 4
% / da d'b d'c efia-(zfy)efilr(yfz)efic-(zfz)
(2m)* (2m)* (2m)*

x Tr [wsf (ay”S;” (b)S} (c)} .
(8)

And to diagram B

quB’(—LBl;) (1‘7y7 Z) = _igggftr [tatb] QQ(Z7y)QlI(x7 Z)QQ(ya 1‘)

4 4 4
X/ d*a d'b d'c e*ian(zfy)efib»(yfz)efio(zfa:)
(2m)* (2m)* (2m)*

x Tr "S5 (—apSy (o)) (-b)]
(9)
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roduction through gluon fusion in a magnetic field

Working out a little bit we arrive at

d—2
47
iTHY _ 5.2 a,b
ZFqB(A/B)(p17p2) - nggftr |:t t :| (?B)
d81d82d83 ~

oo (10)
T
X /0 cos(qBs1) cos(qgBs2) cos(qgBss) G T(aspy

with

g1-3d (—ichos(s1)cos(51 +52)>3—1 ( (qB)? cot(s3) >31

G =
(A/B) o2 sin(s) cot(ss) — tan(sz)

o o o2 sinlea) [yan(sy) (van(sz) cot(s3)p3 | +p7 | )+tan(s2) (pr+p2)? ]

,ism?eé ((SlJrsz)SSPfH +(81+83)52P§H +28283(P1'P2)||>

X e

3B

Acos(sl)cos(s2)sin(53)
X e' 4 sin(s)

tan(s1) tan(sz)p1 Fp2

(11)
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production through gluon fusion in a magnetic field

Approximations

The integrals that remain to be solved over the s; parameters cannot be calculated
analytically, so it is necessary to carry out certain approximations.

The most frequently used approaches in the literature are
o Weak magnetic field.
e Strong magnetic field.

These approximations are taken when ¢B < mfc v qB > mfc, respectively'?.

120 get a reference, the critical magnetic field for a
electron is 4.4 x 103G ~ (0.5MeV)?
Urquiza ( y June 17, 2021
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Figure: Behavior of the partial cross section as a function of the mass of the quarks within
the fermionic loop, taking © =, p;; = 0.5m; and ¢B = O.Qm?.
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Magnetic field effe

Magnetic field effects

To quantify more precisely the effect of both the magnetic field and the transverse
moment of gluons, it is convenient to define

qB
Jro, partial — OLO, vacuum

Ao =

(12)

OLO, vacuum
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Figure: Behavior of the response of the effective section as a function of the magnetic field
for the top and bottom quarks, taking different values of the transverse moment and © = 7.
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What’s next?

Calculate the total cross section in the presence of magnetic field.

Take an approximation that allows studying an arbitrary interval for the
magnitudes of the transverse components of the moment.

For light quarks you must work with a strong field approximation.

@ A more complete analysis should include the effects of temperature.

Electroweak corrections.

Jaber-Urquiza (FC-UNAM) June 17, 2021



Beyond Standard Model?

@ Measurements of the properties of the Higgs boson open a new window for
understanding fundamental interactions and for exploring possible extensions to
the laws of physics that we know.

o If small deviations can be found between the theoretical predictions and the
experimental data, these could be a sign of new physics, physics beyond the
Standard Model (BSM).

@ A precision physics program, both theoretical and experimental, of the
properties of the Higgs boson would be of great relevance as it could provide
evidence, directly or indirectly, of BSM physics.

o LHC has entered a stage where precision measurements of Higgs properties play
a central role.

Jaber-Urquiza (FC-UNAM) June 17, 2021



Higgs production through gluon fusion
@ The contribution to this process due to pure QCD interactions is around 95%
while QCD-electroweak (QCD-EW) interactions contribute approximately 5%"3.

o “Leading-order” (LO) *
o “Next-to-leading-order” (NLO) ~ 80 — 100%"°
o “Next-to-next-to-leading-order” (NNLO or N°LO) ~ 10 — 20%*°

o “Next-to-next-to-next-to-leading order” (N°LO) ~ 4 — 6%"7

13
14
15
16
17

. Tanabashi et al. Phys. Rev. D 98, 03001, (2018).
M. Georgi et al. Phys. Rev. Lett. 40, 692, (1978).

. Spira et al. Phys. Lett. B 453, 17, (1995).
Anastasious. Nucl. Phys. B 646, 220, (2002).
Anastasious et al. JHEP 05, 058, (2016).
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Relativistic heavy ion collisions

In relativistic heavy ion collisions, it is possible to create an extreme high
temperature and density environment that evolves over time'®

e t=0 fm/c: In this initial stage the hadronic jets, direct photons, pairs of
dileptons, heavy quarks, and vector bosons are produced.

o t~0.2 fm/c: A state called “glasma” is created, it’s made up of non-equilibrium
partonic matter at high density'®.

e t~1 fm/c: The partons that make up the “glasma” begin to interact strongly
(QCD) with each other and a thermal equilibrium is reached.

o The result of this thermalization is a phase of QCD at high temperature known
as “quark-gluon plasma” (QGP).

18E, Tancu. arXiv:1205.0579 [hep-ph].
97, Lappi et al. Nucl. Phys. A 772, 200, (2006).
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Quark-gluon plasma

o The characteristic time for the expansion and cooling of the QGP is of the order
of 10 fm/c°.

o The mean lifetime of the Higgs boson is 7 ~ 47 fm/c'.

o Taking this in consideration, we could imagine the following physical situations:

o A Higgs boson produced in the initial stage of the collision (before the formation
of the QGP) is affected by the plasma and modifies some of its properties such as
the lifetime, the kinematic distribution, the decay rate, etc.

o A Higgs boson is produced within the QGP, so that the main effect of the
thermalized medium will be observed in the production rate.

20R. Shen et al. Phys. Rev. C 86, 049903(E), (2012)
21\, Tanabashi et al. Phys. Rev. D 98, 03001, (2018).
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What else?

The Higgs field is described by a neutral scalar field, so the results of this research
can be generalized and applied to various physical processes where a scalar field plays
a central role.

o Inflation®?.
e Compact astrophysical objects (color superﬂuidity%).

o Production of different (pseudo)scalar particles in relativistic heavy ion collisions
such as mesons (7w, B, D), etc.

22T. Matos et al. Classical Quantum Gravity 17, 1707, (2000)
23 M. Alford et al. Phys. Lett. B 422, 247, (1998).
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Feynman rules

e Propagator

@ Vertices

-------- = —igs05}. = —ig (") 0.

(a) Yukawa. (b) Gluon-quark.

Figure: Interaction vertices.
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How does it looks the vertex?

Taking into account the tensor structures that are available in this process*

Vacuum: p¥, p4, g"* & P,

Magnetic field: F*", F*"" & F", F".

In the magnetic field case there are more than 60 different rank-two tensors available
for the vertex. The most general form includes them all!

Good news, the effective vertex must be such that it fulfills certain properties and it
simplifies a little bit its tensor structure.

241. Batalin and A. Shabad. Zh. Eksp. Teor. Fiz. 60, 894, (1971).
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e Slavnov-Taylor identities

PiTuw(p1,p2) =0, (13)
P2l (p1,p2) = 0. (14)

o Boson symmetry
" (p1,p2) = T (p2,p1)- (15)

Taking into account this proprieties and the gluons on-shell, the tensor structure that
the effective vertex must take is

. . v o v F” ﬁw
I (p1, pa) =A [g“ _ pivh } 4 p AP | A F P

Pl'I:2 ., p1 - D2 P1 - p2 (16)
v b1, Pp
+D {g’i — ﬂ] + 9 more terms.
(p1-p2) 1

Jaber-Urquiza (FC-UNAM) June 17, 2021



—

Tensor structure in a magnetic field

. ~ v o
Py ph Py DYy Flpi F¥py Py, P2
F”;(pl,pz):A |:gp.u7 1Py | g PP | o +D|g" — 172,
q P1 - D2 P1 - P2 P1 - P2 (p1-p2)L
[ptp? + phpy DYDY, + DEDh (p1 - p2)g"” —pipy — phpy
+E PipP1 +Pepy  PiP1, LENS e o+ L 2, 2P1,
P1 - P2 (p1-p2)1 (p1-p2)L

H (pzﬁpl) {g*‘" p2Fpi (p1-pa) P + ph F¥py — pZF“pz]

(p1 - p2)? (p1 - p2)?
[/ o N2 phpl + phpy ~ N\ PYEYpL — psFrpy
1 [(rapn)? BB () PP =0
i (p1 - p2) (p1 - p2)
[ o p2Fpr  FrpaFVp N\ PYEFYpa — psFrp
+J|F* » pl— p— : +K(p2Fp1)—l - p2 !
1 P2 1 P2 1 P2
[ Frpy BV py + Frps BV py ~ N\ PiF py — ph FVps
+L - (szpl) L= 2 -
L P1 - P2 (p1 - p2)
2 FrY poplt FYpy —pY EFhp
; p2Fp1 2, 1= P 2
+ M (szm) [g”ui —(p1-p2)L
+ (p1 - p2)? (p1 - p2)?
N plll F“I’l—llg FVPQ p”FVp2—pVF”p1
(p1 - p2) (p1 - p2)
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Taking the Fourier transform of the effective vertex it’s possible to identify easily
Dirac deltas in the parallel coordinates but not in the perpendicular ones due to the
phase that the diagram has acquired. Carrying out integration in the configuration
space

47 \*
ey _ . 2 ab 8 (2)
5 4)(P1yP2,p3) = = igig, tr [t t } (27) (E) 6 (p1+p2 —ps3),

/ d*a d*' d*c
(2m)* (2m)* (2m)*
x 6% (p3 —c+ b) elan (Prra—c)u F1 (pa+b—a)y

0@ (pr+a=c)y 6P (p2 +b—a), (17)

x Tr [’y”S;B ()’ Sy (b)S] (c)] .
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.

In order to carry out the integration on the internal momenta, the expressions are
generalized to an arbitrary dimension d. Since the presence of the magnetic field
separates the parallel and perpendicular components, we will have 2 parallel
dimensions and d — 2 perpendicular dimensions

A\ 42
% _ . 2 a b 4
2 ) =gkt [] () ()
X/oo d81d52d83
o cos(gBsi1)cos(gBs2)cos(¢qBss)
/ d’a d% d'c elas (Prta—)F(pa+b—a)

@) (2m)7 (2m) s
w ot (m?—af—ad IR ) sy (m?—of 03 EEE))
—isg(m?2—c2—c? 2 tan(gBs3)
X e = ( I7°L " aBs3 )5 (p1 —l—a—c)H
><5(2)(p2+b7a (aH,aL,bH,bL,cH,CL)
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Hierarchy of scales

Flavor Electric charge [e]  ¢Bmaz [GeV?]

Up (u) 2/3 ~107°
Down (d) -1/3 ~4.4x107°
Strange (s) -1/3 ~2x1073
Charm (c) 2/3 ~ 0.3
Bottom (b) -1/3 ~ 3.5

Top (t) 2/3 ~ 6 x 10?

Figure: Maximum magnetic field from which the weak field approximation loses validity, it’s
taken qBmar = 042m§.

For a point of comparison, the maximum field that is created in relativistic heavy ion
collisions is

€Bmaz ~ 10m2 ~ 2 x 10* MeV? = 2 x 1072 GeV>.
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It is possible to create an homogeneous magnetic field in the z direction with a

symmetric gauge

AF = (O,fng, g:pl,O) .

In such a way that the Schwinger phase is

Qu(w,y) = e FonF v — i (ehvamatu),

Applying (20) to diagrams A and B, the corresponding total phases are

.gB fHuv .
Qq (2, ) (y, 2)Q(2,2) = e (wnvwtypetapmn) e "2

- gB ppv (.. .
Qu(y, 2)Q (2, y) (2, 2) = =7 T (vetmzatznen) _
where

= xgyl —+ m1y2 — ygzl =+ y122 — zle -+ z1x2.

Jaber-Urquiza (FC-UNAM)
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Figure: Behavior of the response of the effective section as a function of the magnetic field
for the top and bottom quarks, taking different combinations for the values of the transverse
moment p1, +p2, =my and © = 7.
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