Measurement of Polarization Observables and Beam-Spin Asymmetry of Two Pion Electroproduction off the Proton with CLAS

Chris McLauchlin

University of South Carolina

Advisor: Dr. Ralf Gothe

Overview

- Reaction Channel
- Experimental Goals
- Experimental Setup
- Event Selection
 - Particle Identification
 - Topologies
- Observable Extraction
 - Simulation
 - Corrections
 - Final Extraction
- Summary

Reaction Channel

Double Charged Pion Electroproduction off the Proton

 $\bigvee_{p} = \sqrt{\left(p^{\mu} + q^{\mu}\right)^{2}}$ $Q^{\mu} = K^{\mu} - k^{\mu} M^{2} = (K^{\mu} + P^{\mu} - k^{\mu} - h^{\mu}_{j})^{2}$ $M^{2}_{i} = (K^{\mu} + P^{\mu} - k^{\mu} - h^{\mu}_{j})^{2}$ i≠j≠k

HUGS 2021

Reaction Channel

2

Reaction Channel

Experimental Goals

• Understand Proton Structure

- Scale Dependence (Q²)
- Function of N* Mass (W)
- Non-Perturbative Regime
- Some Spin Structure
 - Polarization Observables
 - Beam-Spin Asymmetry

Extracted Observables

Polarization Observables

 $\frac{d^{2}\sigma^{*}}{dX_{ij}d\Phi_{i}} = R^{2} \frac{X_{ij}}{\tau_{\phi_{i}}} + R^{2} \frac{X_{ij}}{\tau_{\phi_{i}}} + R^{2} \frac{\zeta_{i}\chi_{ij}}{\zeta_{i}} \cos \phi_{i} + R^{2} \frac{\zeta_{i}\chi_{ij}}{\tau_{\phi_{i}}} \cos 2\phi_{i} + \delta_{\chi_{i}\chi_{i}} \left(R^{2} \frac{\zeta_{i}\chi_{ij}}{\zeta_{i}} \zeta_{i} \phi_{i} + R^{2} \frac{\zeta_{i}\chi_{ij}}{\tau_{\phi_{i}}} \sin 2\phi_{i} \right)$

Photon Polarization dependent observables in the double charged meson electroproduction

Serve as input to the Jefferson Laboratory--Moscow State University (JM) Model for non-pQCD modeling **Beam-Spin Asymmetry**

$$A_{LU} = A_{LU}^{0} + A_{LU}^{\sin\phi} \sin\phi = \frac{1}{P_{B}} \frac{N^{+} N^{-}}{N^{+} N^{-}}$$

Places relational constraints between Polarization Structure Functions

In addition to Single Differential Cross Sections

Experimental Goals

CEBAF at Jefferson Lab

- Electron Accelerator
 - Polarized Electron Beam ~75%
- Run Group E1-6
 - 5.754 GeV
 - Unpolarized H₂ Target
 - Polarized Beam
- Run Group E1F
 - 5.498 GeV
 - Unpolarized H₂ Target
 - Polarized Beam

CLAS Detector

- Large Q² Coverage
 - Large angular acceptance
 - Explore scale dependence of hadron structure
- Particle Momentum and Tracking
 - Curvature through Drift Chambers (DC) in azimuthal magnetic field
- Electron/ π^{-} Separation
 - Cherenkov Counters (CC)
 - Electromagnetic Calorimeter (EC)
- Hadron Identification
 - DC
 - Time of Flight from Scintillation Counters (SC)

Electron ID

• Sanity Cuts

- Did we hit all relevant detectors?
- Angular Fiducial Cuts
 - Cutting out clipping on detector edges
 - Momentum Dependent
- Minimum CC Cuts
 - Minimize Pion contamination
 - Not performed on Sim
- Sampling Fraction Cuts
 - Further separation from pions and other minimum ionizing particles

Event Selection

Proton and π^+ ID

- Sanity Cut
 - Hits in relevant detector systems
- Angular Fiducial Cut
 - Cut out detector clipping
- Delta T Cut
 - Comparison of traversal time from direct measurement and mass assumption

Event Selection

$\pi^{-}ID$

- Sanity Cut
 - Hits in relevant detector systems
- Angular Fiducial Cut
 - Cut out detector clipping
 - Momentum Dependent
- Delta t Cut
 - Comparison of traversal time from direct measurement and mass assumption

Topology Isolation

HUGS 2021

Event Selection

11

Topology Combination

x-axis referrs to different topology combinations

- Maximize Statistics
 - Combine multiple topologies
 - Increase yields ~20%
- Single events can fall under multiple topologies
 - How to categorize?
- Hierarchy
 - Fully Exclusive
 - PIM
 - Proton
 - PIP

Correction Factors

- Acceptance Correction
 - Detector Efficiencies
- Energy-Momentum Correction
 - Accounts for B-Field Irregularities and Subsequent Energy Loss
- Radiative Correction
 - Account for Radiated Photons
- CC Efficiency Correction
 - Account for CC Efficiencies
- Kinematic Hole Filling
 - Fill Kinematic Holes for Bin Integration

- Empty Target Subtraction
 - Isolate Events from Target

Need More Simulation

15

Single Differential

$$\frac{\Delta \sigma^{\nu}}{\Delta X_{ij}} = \frac{\Delta^3 N_{xec} + \Delta^3 N_{xeh}}{\Gamma^{\nu} L R \Delta W \Delta Q^2 \Delta X_{ij}}$$

Beam-Spin Asymmetry

$$A_{LU} = A_{LU}^{0} + A_{LU}^{\sin\phi} \sin\phi = \frac{1}{P_B} \frac{N^{\dagger} - N^{\dagger}}{N^{\dagger} N^{\dagger}}$$

Completed

- Particle ID Cuts
 - Methodology and Infrastructure
 - Single Iteration
- Topology Assignment and Combination
 - Methodology and Infrastructure
- Workflow for Simulation
- CC Efficiency
 - Methodology and Infrastructure
- Empty Target Subtraction
 - Methodology
- Energy-Momentum Correction
 - Methodology and Infrastructure
- Radiative Correction
 - Methodology
- Hole Filling
 - Methodology and Infrastructure

Current Work

- Work Over Full Data Sets
- Reach Sufficient Statistics in Simulation
- Empty Target Subtraction
 - Infrastructure
- Additional Particle ID Cut Iterations
- Radiative Correction
 - Infrastructure
- Final Extraction
 - Infrastructure

Thank you

Any Questions?

19

Delta t Cut

 $\Delta t = t_{sc} - t_{Dc}$

Gives the difference in traversal time between a direct measurement and one based on an assumed mass

More directly related to the detectors and allows for a nicer separation

Min CC Cut

Sampling Fraction Cut

HUGS 2021

23

Kinematic Hole Filling

- HOLES
 - Physical holes in our kinematic coverage
 - Integration over bins for certain observables requires integration over artificially empty bins
 - Determined from simulation

Kinematic Hole Filling

- Q_r Integrated Faraday Cup Ratio N – Yield X – Experiment with Target E – Experiment with Empty Target R – Simulated Reconstruction T – Simulated Thrown A – Acceptance C – Acceptance Corrected
- sf Scale Factor