HUGS 2021 Lectures on: Experimental Meson Spectroscopy

Prologue: Definitions and Philosophy

- I. A Field Guide to Meson Families
- II. Meson Quantum Numbers
- III. The Quark Model
- IV. Exotic Mesons
- V. Current and Future Experiments

LECTURE IV. Exotic Mesons

- IVA. Exotic Meson Identification
- IVB. Exotic Charmonium
- IVC. Exotic Bottomonium
- IVD. Exotic Light Quark Mesons

Ryan Mitchell

Senior Scientist Indiana University (<u>remitche@indiana.edu</u>)

 \bar{q}

q

A variety of color-singlet meson states are allowed, in principle:

MESONS

All non- $q\bar{q}$ mesons and all non-qqq baryons are "exotic" (note: sometimes "exotic" is reserved for non- $q\bar{q} J^{PC}$, like 0^{--} , 0^{+-} , 1^{-+} , 2^{+-} ,...). q

pentac

Exotic mesons can be distinguished from conventional mesons in at least four ways:

- 1. unusual properties *e.g. X*(3872)
- 2. overpopulation *e.g. Y*(4260), *Y*(4360)
- 3. exotic flavor *e.g.* $Z_c(3900), Z_c(4020)$
- 4. exotic J^{PC} *e.g.* $\pi_1(1600)$

major caveat: an exotic hadron must also be a hadron (as opposed to a scattering artifact, for example)

Charmonium

This talk: charmonium, bottomonium, light quark mesons.

	Physics Reports 873 (2020) 1–154	Particle	$I^G J^{PC}$	Mass [MeV]	Width [MeV]	Production and Decay
		$X(3823) (\psi_2(1D))$	$(0^{-}2^{})$	3822.2 ± 1.2 [176]	< 16	$B \to KX; X \to \gamma \chi_{c1}$
- W 1 - SENSALAINAR, SALINA-			(* -)			$e^+e^- \to \pi^+\pi^-X; X \to \gamma \chi_{c1}$
	Contents lists available at Science					$B \to KX; X \to \pi^+\pi^- J/\psi$
Constant Constant						$D \to KX; X \to D^{**}D^{*}$ $B \to KX; X \to \alpha L/ab \alpha \alpha b (2S)$
South States	Physics Reports	X(3872)	0+1++	$3871.69 \pm 0.17.[176]$	< 1.2	$B \to KX; X \to \psi J/\psi$
E. C.					<	$B \to K\pi X: X \to \pi^+ \pi^- J/\psi$
FI SEVIER	journal homepage: www.elsevier.com/lo					$e^+e^- \to \gamma X; X \to \pi^+\pi^- J/\psi$
LEDEVILIC	, , , , , , , , , , , , , , , , , , ,					$pp \text{ or } p\bar{p} \to X + \text{any.}; X \to \pi^+\pi^- J/\psi$
		Z (3900)	1+1+-	3886.6 ± 2.4 [176]	28.1 ± 2.6	$e^+e^- \to \pi Z; Z \to \pi J/\psi$
		$\Sigma_c(3500)$		5000.0 ± 2.4 [170]	20.1 ± 2.0	$e^+e^- \to \pi Z; Z \to D^*\bar{D}$
The XYZ sta	tes: Experimental and theoretical	X(3915)	0+0++	3918.4 ± 1.9 [176]	20 ± 5	$\gamma\gamma \to X; X \to \omega J/\psi$
	tes. Experimental and theoretical	Y(3940)			24 1 0	$B \to KX; X \to \omega J/\psi$
perspective	S	$Z(3930) (\chi_{c2}(2P))$	$0^{+}2^{++}$	$\frac{3927.2 \pm 2.6 [176]}{2040 \pm 7 \pm 6 [41]}$	24 ± 6	$\gamma \gamma \to Z; Z \to DD$
Nora Prambilla	h. Simon Fidelman b.k.h. Christoph Hanhar	X(3940)	1	$\frac{3942_{-6}^{++} \pm 6 [41]}{2801 + 41 + 12 [22]}$	$37^{+20}_{-15} \pm 8$	$e^+e^- \to J/\psi + X; X \to DD^*$
	a sha, Simon Eldennan shar, Christoph Hannan	Y (4008)		$\frac{3891 \pm 41 \pm 12}{23}$	$255 \pm 40 \pm 14$	$e^+e^- \rightarrow Y; Y \rightarrow \pi^+\pi^- J/\psi$
Alexey Neledie	Change 7 and Young 6	$Z_c(4020)$	$1^{+?^{-}}$	$4024.1 \pm 1.9 \ [176]$	13 ± 5	$e^+e^- \to \pi Z; Z \to M h_c^*$
Antonio Vairo	, Chang-Zheng Yuan ^{she}	$Z_1(4050)$	1-??+	$4051 \pm 14^{+20}$ [133]	82^{+21+47}_{17}	$\frac{B \to KZ; Z \to \pi^{\pm} \gamma_{c1}}{B \to KZ; Z \to \pi^{\pm} \gamma_{c1}}$
		$Z_{c}(4055)$	1+??-	$4054 \pm 3 \pm 1$ [148]	$45 \pm 11 \pm 6$	$e^+e^- \to \pi^\mp Z; Z \to \pi^\pm \psi(2S)$
		V(4140)	0+1++	$41465 \pm 45^{\pm 4.6}$ [125]	$92 \pm 91^{+21}$	$B \to KY; Y \to \phi J/\psi$
		1 (4140)	0.1	$4140.0 \pm 4.0_{-2.8} [120]$	$0.0 \pm 21_{-14}$	$pp \text{ or } p\bar{p} \to Y + \text{any.}; Y \to \phi J/\psi$
		X(4160)		$4156_{-20}^{+25} \pm 15 \ [41]$	$139^{+111}_{-61} \pm 21$	$e^+e^- \to J/\psi + X; X \to D^*D^*$
		$Z_{c}(4200)$	1+1+-	4196^{+31+17}_{-29-13} [46]	$370^{+70+70}_{-70-132}$	$B \to KZ; Z \to \pi^{\pm} J/\psi$
	December in Decticle and Nuclear Division 02 (2	Y(4230)	0-1	$4230 \pm 8 \pm 6$ [149]	$38 \pm 12 \pm 2$	$e^+e^- \to Y; Y \to \omega \chi_{c0}$
	Progress in Particle and Nuclear Physics 93 (2	$Z_c(4240)$	$1^+0^{}$	$4239 \pm 18^{+45}_{-10}$ [138]	$220 \pm 47^{+100}_{-74}$	$B \to KZ; Z \to \pi^{\perp}\psi(2S)$
		$Z_2(4250)$		$4248_{-29-35}^{+11+100}$ [133]	177_{-39-61}	$B \to KZ; Z \to \pi^{\perp}\chi_{c1}$
	Contents lists available at Scien	Y(4200)	0 1 0+1++	$\begin{array}{ } 4231 \pm 9 \ [1/0] \\ 4272 \ 2 \pm 9 \ 2^{\pm 17.2} \ [107] \end{array}$	120 ± 12 52 \pm 11 ⁺⁸	$\begin{array}{ccc} e \cdot e & \rightarrow I ; Y \rightarrow \pi \pi J/\psi \\ \hline D & \downarrow VV , V \rightarrow \phi I/\phi \end{array}$
		$\frac{I(4214)}{V(4250)}$	$0^{+}1^{+}$ $0^{+}2^{?+}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$32 \pm 11_{-11}$ $12^{+18} \pm 4$	$D \to KI; I \to \phi J/\psi$
	Progress in Particle and Nu	X(4350) V(4360)	1	$\begin{array}{c} 4350.0 \\ -5.1 \pm 0.7 \\ 176 \\ \hline 4346 + 6 \\ 176 \\ \hline \end{array}$	$13_{-9} \pm 4$ 102 ± 10	$e^+e^- \to V \colon V \to \pi^+\pi^-\eta/(2S)$
	riogress mit article and rid	1 (4000)	1	1010 ± 0 [110]	102 ± 10	$\frac{C}{B} \rightarrow KZ; Z \rightarrow \pi^{\pm} J/\psi$
ALCON AND AND AND AND AND AND AND AND AND AN		$Z_{c}(4430)$	1+1+-	4478^{+15}_{-18} [176]	181 ± 31	$B \to KZ; Z \to \pi^{\pm}\psi(2S)$
ELSEVIER	journal homepage: www.elsevier.con	X(4500)	0+0++	$4506 \pm 11^{+12}_{-15}$ [125]	$92 \pm 21^{+21}_{-20}$	$B \to KX; X \to \phi J/\psi$
		X(4630)	1	4634^{+8+5}_{-7-8} [150]	92^{+40+10}_{-24-21}	$e^+e^- \to X; X \to \Lambda_c \bar{\Lambda}_c$
Review		Y(4660)	1	$4643 \pm 9 \ [176]$	72 ± 11	$e^+e^- \rightarrow Y; Y \rightarrow \pi^+\pi^-\psi(2S)$
H_{P2}	rk OCD evotica	X(4700)	0+0++	$4704 \pm 10^{+14}_{-24} \ [125]$	$120 \pm 31^{+42}_{-33}$	$B \to KX; X \to \phi J/\psi$
ricavy-yua		•				· · · · · · · · · · · · · · · · · · ·
Richard F Leh	ed ^{a,*} Ryan F Mitchell ^b Fric S Swanson ^c					
	ca , Ryan L. Mitchen , Life S. Swanson					

	Physics Reports 873 (2020) 1-	154
	Contents lists available at Scient	nceDirect PHysics REPorts
	Physics Repor	A. Glossary of Exotic States
ELSEVIER	journal homepage: www.elsevier.cor	A.1. $X(3823)$ (or $\psi_2(1D)$) The $X(3823)$ was discovered by the Belle Collaboration in 2013 in the reaction $B \to KX$ with $X \to \gamma \chi_{c1}$ [124]. The PESUL Collaboration later found a peak consistent with the $X(2823)$ produced in $e^+e^- \to \pi^+\pi^- X$, again with
The XYZ star perspective Nora Brambilla Alexey Nefedie Antonio Vairo ¹	tes: Experimental and theoretic S a ^{1,m} , Simon Eidelman ^{b,k,h} , Christoph Han ev ^{h,i,j} , Cheng-Ping Shen ^{e,a,**} , Christopher , Chang-Zheng Yuan ^{g,c}	The BESHI Cohaboration later found a peak consistent with the $X(3823)$ produced in $e^+e^- \rightarrow \pi^+\pi^- X$, again with $X \rightarrow \gamma \chi_{c1}$ [164]. The $X(3823)$ is likely the $\psi_2(1D)$ state of charmonium. See Sec. 2.6 for more detail. A.2. $X(3872)$ Accidentally discovered by the Belle Collaboration in 2003 in the reaction $B \rightarrow KX$ with $X \rightarrow \pi^+\pi^- J/\psi$ [4], the $X(3872)$ was both the first of the XYZ states to be discovered and is the one that has been most studied. Nevertheless, like most of the XYZ states, there is no interpretation that is universally agreed upon. It has been produced in decays of the B meson [4, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 140], in hadronic collisions [27, 28, 171, 172, 173, 178], and perhaps in radiative decays of the $Y(4260)$ [52]. Besides $\pi^+\pi^-J/\psi$, it has also been seen to decay to $\psi I/\psi$ [122] $D^*\bar{D}$ [115, 116, 117] $\simeq I/\psi$ [118, 119, 120, 121] and $\simeq \psi(2S)$ [118, 120]. Its unusual features include
		a mass that is currently indistinguishable from the $D^{*0}\bar{D}^0$ threshold (the current mass difference is 0.01 ± 0.18 MeV) and a narrow width (< 1.2 MeV). It is has no isospin partners and has $J^{PC} = 1^{++}$. See Sec. 2.3 for more discussion of its experimental properties.
	Progress in Particle and Nuclear Physics	The $Z_c(3900)$ was simultaneously discovered in 2013 by the BESIII and Belle Collaborations in the process $e^+e^- \rightarrow \pi^{\pm}Z_c^{\pm}$ with $Z_c^{\pm} \rightarrow \pi^{\pm}J/\psi$. For the BESIII observation [22], the center-of-mass energy was fixed to 4.26 GeV. Belle [23] used initial-state radiation to cover the energy region from 4.15 to 4.45 GeV corresponding to the region of the $Y(4260)$
	Contents lists available at So	It is not yet clear whether the production of the $Z_c(3900)$ is associated with the $Y(4260)$. The $Z_c(3900)$ has since been seen in decays to $\pi^0 J/\psi$ [31, 32] (Z_c^0) and in $D^*\bar{D}$ (both charged and neutral) [33, 154, 155]. It has only been produced
	Progress in Particle and I	in the reaction $e^+e^- \to \pi Z_c$. See Sec. 2.5.4 for more experimental details. A.4. $X(3915)$ (or $\chi_{c0}(2P)$)
ELSEVIER Review	journal homepage: www.elsevier	The $X(3915)$ was first seen by the Belle Collaboration in 2010 in the process $\gamma \gamma \to X$ with $X \to \omega J/\psi$ [166]. It was later confirmed by the BaBar Collaboration [167]. It appears as a clear peak with little background. Its J^{PC} is likely 0^{++} , so there is some possibility that it is the $\chi_{c0}(2P)$ state of charmonium, although this assignment is controversial. See Sec. 2.6 for more discussion.
Richard F. Lebe	ed ^a ,*, Ryan E. Mitchell ^b , Eric S. Swansor	1 [°]

The basics of exotic charmonium (or "charmoniumlike" states):

 $\chi_{c1}(3872)$ aka X(3872)

 $\psi(4230)$ and $\psi(4360)$ aka Y(4260) and Y(4360)

 $Z_c(3900)$ and $Z_c(4020)$

 Z_c mesons in *B* decays

Original names (still commonly used):

- Y: mesons made directly in e^+e^-
- Z: "charmonium" with $I \neq 0$.
- X: everything else

Charmonium

Charmonium

Original names (still commonly used):

- Y: mesons made directly in e^+e^-
- Z: "charmonium" with $I \neq 0$.
- X: everything else

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

Charmonium

IVB. Exotic Charmonium: $X(3872)^{\mu^+}$

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

B decays at Belle, BaBar, LHCb, etc.

VOLUME 91. NUMBER 26	PHYSICAL	REVIEW	LETTERS	week ending 31 DECEMBER 2003
VOLUME 71, NUMBER 20				31 DECENIDER 200

(Belle Collaboration)

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

Belle found $B^+ \to K^+ X^0$ but not $B^+ \to K^0 X^+$, which you would expect if I = 1.

PHYSICAL REVIEW D 84, 052004 (2011)

Bounds on the width, mass difference and other properties of $X(3872) \rightarrow \pi^+\pi^- J/\psi$ decays

(The Belle Collaboration)

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

PHYSICAL REVIEW D 92, 011102(R) (2015) numbers of the V(3872) state and orbital angula

Quantum numbers of the X(3872) state and orbital angular momentum in its $\rho^0 J/\psi$ decay

> R. Aaij *et al.** (LHCb Collaboration)

Perform an amplitude analysis using the decay chain:

$$B^{+} \to X(3872)K^{+}$$
$$X(3872) \to \rho^{0}J/\psi$$
$$\rho^{0} \to \pi^{+}\pi^{-}$$
$$J/\psi \to \mu^{+}\mu^{-}$$

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

PHYSICAL REVIEW D 92, 011102(R) (2015)

Quantum numbers of the X(3872) state and orbital angular momentum in its $\rho^0 J/\psi$ decay

R. Aaij *et al.*^{*} (LHCb Collaboration)

Angular distribution:

$$\sum_{\Delta\lambda_{\mu}=-1,+1} \sum_{\lambda_{J/\psi},\lambda_{\rho}=-1,0,+1} A_{\lambda_{J/\psi},\lambda_{\rho}} D^{J_{X}}_{0,\lambda_{J/\psi}-\lambda_{\rho}}(0,\theta_{X},0)^{*}$$
$$D^{1}_{\lambda_{\rho},0}(\Delta\phi_{X,\rho},\theta_{\rho},0)^{*} D^{1}_{\lambda_{J/\psi},\Delta\lambda_{\mu}}(\Delta\phi_{X,J/\psi},\theta_{J/\psi},0)^{*}|^{2}$$

Perform an amplitude analysis using the decay chain:

$$B^{+} \rightarrow X(3872)K^{+}$$

$$X(3872) \rightarrow \rho^{0}J/\psi$$

$$\rho^{0} \rightarrow \pi^{+}\pi^{-}$$

$$J/\psi \rightarrow \mu^{+}\mu^{-}$$

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

PHYSICAL REVIEW D 92, 011102(R) (2015)

Quantum numbers of the X(3872) state and orbital angular momentum in its $\rho^0 J/\psi$ decay

> R. Aaij *et al.** (LHCb Collaboration)

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

PHYSICAL REVIEW LETTERS 122, 202001 (2019)

Observation of the Decay $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$

(BESIII Collaboration)

10

5

5

(9) produ hold clue

17

0.42

1.58

1.16

0.99

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

PHYSICAL REVIEW D 102, 092005 (2020)

Study of the lineshape of the $\chi_{c1}(3872)$ state

a.u.]

 $dR(J/\psi\,\pi^+\pi^-)$

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

- (4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies
- (5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production may hold clues to it's internal structure

Study of the lineshape of the $\chi_{c1}(3872)$ state

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production mayhold clues to it's internal structure

PHYSICAL REVIEW D 72, 054026 (2005)

Higher charmonia

T. Barnes, ^{1,*} S. Godfrey, ^{2,†} and E. S. Swanson^{3,‡}

Multiplet	State	Expt.	Input (NR)	Theor. NR GI
1 S	$\frac{J/\psi(1^3S_1)}{\eta_c(1^1S_0)}$	$\begin{array}{c} 3096.87 \pm 0.04 \\ 2979.2 \pm 1.3 \end{array}$	3097 2979	3090 3098 2982 2975
2S	$\psi'(2^3S_1) \ \eta'_c(2^1S_0)$	$\begin{array}{c} 3685.96 \pm 0.09 \\ 3637.7 \pm 4.4 \end{array}$	3686 3638	3672 3676 3630 3623
3S	$\psi(3^3S_1) \\ \eta_c(3^1S_0)$	4040 ± 10	4040	4072 4100 4043 4064
4S	$\psi(4^3S_1) \\ \eta_c(4^1S_0)$	4415 ± 6	4415	4406 4450 4384 4425
1P	$\begin{array}{l} \chi_{2}(1^{3}P_{2}) \\ \chi_{1}(1^{3}P_{1}) \\ \chi_{0}(1^{3}P_{0}) \\ h_{c}(1^{1}P_{1}) \end{array}$	3556.18 ± 0.13 3510.51 ± 0.12 3415.3 ± 0.4 see text	3556 3511 3415	3556 3550 3505 3510 3424 3445 3516 3517
2P	$\begin{array}{l} \chi_{2}(2^{3}\mathrm{P}_{2}) \\ \chi_{1}(2^{3}\mathrm{P}_{1}) \\ \chi_{0}(2^{3}\mathrm{P}_{0}) \\ h_{c}(2^{1}\mathrm{P}_{1}) \end{array}$			3972 3979 3925 3953 3852 3916 3934 3956

Meson	State	Mode	$\Gamma_{\rm thy}~({\rm MeV})$
$\chi_2(3972)$	$2^{3}P_{2}$	DD	42
		DD^*	37
		$D_s D_s$	0.7
		total	80
$\chi_1(3925)$	$2^{3}P_{1}$	DD^*	165

properties of the $\chi_{c1}(3872)$ aka X(3872):

(1) discovered at Belle in 2003 in $B \to K(\pi^+\pi^- J/\psi)$

(2) isoscalar but decays to $\rho J/\psi$ \implies large isospin violation

(3) $J^{PC} = 1^{++}$

(4) produced in $e^+e^- \rightarrow \gamma X$ in a narrow range of e^+e^- energies

(5) a variety of decays have been discovered

(6) mass is extremely close to $D^0 \overline{D}^{*0}$ threshold

(7) width is extremely narrow

(8) inconsistent with quark model expectations for the $\chi_{c1}(2P)$

(9) production may hold clues to it's internal structure

PHYSICAL REVIEW LETTERS 126, 092001 (2021)

Observation of Multiplicity Dependent Prompt $\chi_{c1}(3872)$ and $\psi(2S)$ Production in *pp* Collisions

> R. Aaij *et al.*^{*} (LHCb Collaboration)

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

- (1) not seen in R
- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$
- (6) masses and widths are highly reaction-dependent

Charmonium

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$
- (6) masses and widths are highly reaction-dependent

Charmonium

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$

(6) masses and widths are highly reaction-dependent

PHYSICAL REVIEW D 72, 054026 (2005)

Higher charmonia

T. Barnes,^{1,*} S. Godfrey,^{2,†} and E. S. Swanson^{3,‡}

Multiplet	State	Expt.	Input (NR)	Theo NR	or. GI
15	$\frac{J/\psi(1^3S_1)}{\eta_c(1^1S_0)}$	$3096.87 \pm 0.04 \\ 2979.2 \pm 1.3$	3097 2979	3090 2982	3098 2975
28	$\frac{\psi'(2^3S_1)}{\eta'_c(2^1S_0)}$	3685.96 ± 0.09 3637.7 ± 4.4	3686 3638	3672 3630	3676 3623
38	$\psi(3^3S_1) \\ \eta_c(3^1S_0)$	4040 ± 10	4040	4072 4043	4100 4064
4S	$\psi(4^3S_1) \\ \eta_c(4^1S_0)$	4415 ± 6	4415	4406 4384	4450 4425
1P	$\begin{array}{l} \chi_{2}(1^{3}P_{2}) \\ \chi_{1}(1^{3}P_{1}) \\ \chi_{0}(1^{3}P_{0}) \\ h_{c}(1^{1}P_{1}) \end{array}$	3556.18 ± 0.13 3510.51 ± 0.12 3415.3 ± 0.4 see text	3556 3511 3415	3556 3505 3424 3516	3550 3510 3445 3517
2P	$\begin{array}{l} \chi_{2}(2^{3}\mathrm{P}_{2}) \\ \chi_{1}(2^{3}\mathrm{P}_{1}) \\ \chi_{0}(2^{3}\mathrm{P}_{0}) \\ h_{c}(2^{1}\mathrm{P}_{1}) \end{array}$			3972 3925 3852 3934	3979 3953 3916 3956
3P	$\begin{array}{l} \chi_{2}(3^{3}\mathrm{P}_{2}) \\ \chi_{1}(3^{3}\mathrm{P}_{1}) \\ \chi_{0}(3^{3}\mathrm{P}_{0}) \\ h_{c}(3^{1}\mathrm{P}_{1}) \end{array}$			4317 4271 4202 4279	4337 4317 4292 4318
1D	$\psi_{3}(1^{3}D_{3}) \\ \psi_{2}(1^{3}D_{2}) \\ \psi(1^{3}D_{1}) \\ \eta_{c2}(1^{1}D_{2})$	3769.9 ± 2.5	3770	3806 3800 3785 3799	3849 3838 3819 3837
2D	$ \begin{array}{l} \psi_3(2^3 \mathrm{D}_3) \\ \psi_2(2^3 \mathrm{D}_2) \\ \psi(2^3 \mathrm{D}_1) \\ \eta_{c2}(2^1 \mathrm{D}_2) \end{array} $	4159 ± 20	4159	4167 4158 4142 4158	4217 4208 4194 4208

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

PRL 95, 142001 (2005) PHYSICA

PHYSICAL REVIEW LETTERS

week ending 30 SEPTEMBER 2005

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$
- (6) masses and widths are highly reaction-dependent

Observation of a Broad Structure in the $\pi^+\pi^- J/\psi$ Mass Spectrum around 4.26 GeV/ c^2

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$
- (6) masses and widths are highly reaction-dependent

PRL 95, 142001 (2005) PHYSICAL REVIEW LETTERS week ending 30 SEPTEMBER 2005

Observation of a Broad Structure in the $\pi^+\pi^- J/\psi$ Mass Spectrum around 4.26 GeV/ c^2

PRL 118, 092001 (2017)	PHYSICAL	REVIEW	LETTERS	week ending 3 MARCH 2017
------------------------	----------	--------	---------	-----------------------------

Precise Measurement of the $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ Cross Section at Center-of-Mass Energies from 3.77 to 4.60 GeV

(BESIII Collaboration)

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$

(6) masses and widths are highly reaction-dependent

PRL 98, 212001 (2007)

PHYSICAL REVIEW LETTERS

week ending 25 MAY 2007

Evidence of a Broad Structure at an Invariant Mass of 4.32 GeV/ c^2 in the Reaction $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ Measured at *BABAR*

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

- (1) not seen in R
- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$
- (6) masses and widths are highly reaction-dependent

PRL 98, 212001 (2007)

PHYSICAL REVIEW LETTERS

week ending 25 MAY 2007

Evidence of a Broad Structure at an Invariant Mass of 4.32 GeV/ c^2 in the Reaction $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ Measured at *BABAR*

PHYSICAL REVIEW D 96, 032004 (2017)

Measurement of $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$ from 4.008 to 4.600 GeV and observation of a charged structure in the $\pi^\pm\psi(3686)$ mass spectrum

(BESIII Collaboration)

PRL 114, 092003 (2015)

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$

(6) masses and widths are highly reaction-dependent

PHYSICAL REVIEW LETTERS

 \sqrt{s} (GeV)

week ending

6 MARCH 2015

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

- (1) not seen in R
- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$
- (6) masses and widths are highly reaction-dependent

PHYSICAL REVIEW D 99, 091103(R) (2019)

Cross section measurements of $e^+e^- \rightarrow \omega \chi_{c0}$ from $\sqrt{s} = 4.178$ to 4.278 GeV

(BESIII Collaboration)

week ending

6 MARCH 2015

properties of the $\psi(4230)$ and $\psi(4360)$ (aka Y(4260) and Y(4360)):

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$

(6) masses and widths are highly reaction-dependent

PHYSICAL REVIEW D 102, 031101(R) (2020)

Observation of the Y(4220) and Y(4390) in the process $e^+e^- \rightarrow \eta J/\psi$

(BESIII Collaboration)

ψ(3770)

ψ₂(3823)

ψ₃(3842)

 $\chi_{c0}(3860)$

• χ_{c1}(3872)

• $Z_c(3900)$

• X(3915)

X(3940)

• $\chi_{c2}(3930)$ 0⁺(

• $X(4020)^{\pm}$ 1⁺(

Width [MeV]

properties of the $\psi(4230)$ and $\psi(4360)$ (aka *Y*(4260) and *Y*(4360)):

- (1) not seen in R
- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$

(6) masses and widths are highly reaction-dependent

160 R peaks ABLIKIM 08D (BESII) R AAIJ 13BC (LHCb) $B \rightarrow K \mu \mu$ 140 ψ(4230 BLIKIM 19AI (BESIII) ωχ ABLIKIM 19R (BESIII) πDD³ 120 ABLIKIM 19V (BESIII) vX(3872 ABLIKIM 17B (BESIII) ππJ/ψ 0 ABLIKIM 17G (BESIII) ππh ABLIKIM 17V (BESIII) ππυ(2S) 100 ABLIKIM 17B (BESIII) ππJ/ψ ABLIKIM 17V (BESIII) ππψ(2 80 WANG 15A (BELLE) ππψ (2S LEES 14F (BABAR) ππψ (2S ψ(4390) 60 ABLIKIM 17G (BESIII) ππh ψ(4660) JIA 19A (BELLE) D D. 40 WANG 15A (BELLE) ππψ(2S) LEES 14F (BABAR) ππψ(2S) PAKHLOVA 08B (BELLE) A.A 20 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 Mass [MeV]

PDG 2020 $c\bar{c}$ States Above Open-Flavor Threshold

0-(1)	• ψ (4040)	0-(1
0-(2)	$X(4050)^{\pm}$	$1^{-}(1)^{-}$
0-(3)	$X(4055)^{\pm}$	$1^{+}(1)$
$0^+(0^{++})$	$X(4100)^{\pm}$	$1^{-}($
$0^+(1^{++})$	• χ_{c1} (4140)	0+(1
$1^+(1^{+-})$	• ψ (4160)	$0^{-}(1)$
$0^{+}(0/2^{++})$	X(4160)	? [?] (?
$0^+(2^{++})$	<i>Z_c</i> (4200)	$1^{+}(1)$
? [?] (? [?] ?)	• ψ (4230)	0-(1
$1^+(?^{?-})$	$R_{c0}(4240)$	1+((
	$V(10E0)\pm$	1 - (')

ψ (4040)	$0^{-}(1^{-})$
$X(4050)^{\pm}$	$1^{-}(?^{?+})$
$X(4055)^{\pm}$	$1^+(?^{?-})$
$X(4100)^{\pm}$	$1^{-}(?^{??})$
χ _{c1} (4140)	$0^+(1^{++})$
ψ (4160)	$0^{-}(1^{-})$
X(4160)	? [?] (? ^{??})
<i>Z_c</i> (4200)	$1^+(1^{+-})$
ψ (4230)	$0^{-}(1^{-})$
$R_{c0}(4240)$	$1^{+}(0^{})$
$X(4250)^{\pm}$	$1^{-}(?^{?+})$

PDG 2020 ψ States

 $\psi(4260) = 0^{-}(1^{-})^{-}$

• $\chi_{c1}(4274) = 0^+(1^++)^+$

X(4350)

ψ(4360)

 ψ(4415)

• $Z_c(4430)$

ψ(4660)

 χ_{c0} (4500)

 $\psi(4390)$

 $0^{+}(?^{?+})$

 $0^{-}(1^{-}$

 $0^{-}(1$

 $0^{-}(1^{-}$

 $1^+(1^{+-})$

 $0^{-}(1$

 $\chi_{c0}(4700) \quad 0^+(0^{++})$

 $0^{+}(0^{++})$

properties of the $\psi(4230)$ **and** $\psi(4360)$ **(aka** *Y*(4260) **and** *Y*(4360)):

(1) not seen in R

- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$

(6) masses and widths are highly reaction-dependent

PHYSICAL REVIEW D 80, 072001 (2009)

Measurement of charm production cross sections in e^+e^- annihilation at energies between 3.97 and 4.26 GeV

(CLEO Collaboration)

properties of the $\psi(4230)$ and $\psi(4360)$ (aka Y(4260) and Y(4360)):

- (1) not seen in R
- (2) seen in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- (3) seen in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
- (4) seen in $e^+e^- \rightarrow \omega \chi_{c0}$
- (5) seen in $e^+e^- \rightarrow \eta J/\psi$

(6) masses and widths are highly reaction-dependent

JHEP12(2016)089

Excited and exotic charmonium, D_s and D meson spectra for two light quark masses from lattice QCD

Gavin K.C. Cheung,^{*a*} Cian O'Hara,^{*b*} Graham Moir,^{*a*} Michael Peardon,^{*b*} Sinéad M. Ryan,^{*b*} Christopher E. Thomas^{*a*} and David Tims^{*b*} (For the Hadron Spectrum Collaboration)

properties of the $Z_c(3900)$ and $Z_c(4020)$:

- (1) isovector states so clearly not $c\bar{c}$
- (2) seen in $Z_c(3900) \rightarrow \pi J/\psi$
- (3) seen in $Z_c(4020) \rightarrow \pi h_c(1P)$
- (4) close to open-charm thresholds
- (5) interpretation depends on lineshapes

Charmonium

properties of the $Z_c(3900)$ and $Z_c(4020)$:

- (1) isovector states so clearly not $c\bar{c}$
- (2) seen in $Z_c(3900) \rightarrow \pi J/\psi$
- (3) seen in $Z_c(4020) \rightarrow \pi h_c(1P)$
- (4) close to open-charm thresholds
- (5) interpretation depends on lineshapes

properties of the $Z_c(3900)$ and $Z_c(4020)$:

- (1) isovector states so clearly not $c\bar{c}$
- (2) seen in $Z_c(3900) \rightarrow \pi J/\psi$
- (3) seen in $Z_c(4020) \to \pi h_c(1P)$
- (4) close to open-charm thresholds
- (5) interpretation depends on lineshapes

(BESIII Collaboration)

properties of the week ending 13 DECEMBER 2013 PHYSICAL REVIEW LETTERS PRL 111, 242001 (2013) $Z_c(3900)$ and $Z_c(4020)$: Observation of a Charged Charmoniumlike Structure $Z_c(4020)$ and Search for the $Z_c(3900)$ in $e^+e^- \rightarrow \pi^+\pi^-h_c$ (1) isovector states so clearly not $c\bar{c}$ (BESIII Collaboration) (2) seen in $Z_c(3900) \rightarrow \pi J/\psi$ 60 35 (3) seen in $Z_c(4020) \rightarrow \pi h_c(1P)$ 30 (GeV/c²) 25 Events / (0.001 GeV/c²) 50 h_c 20 $\mathbf{M}_{\pi^+\pi^-\gamma}^{\mathrm{recoil}}$ 15 (4) close to open-charm thresholds 40 30 (5) interpretation depends on lineshapes $M_{\pi^+\pi^-}^{recoil}(GeV/c^2)$ 20 3.52 3.54 3.56 3.60 3.50 3.58 $M_{\gamma\eta}$ (GeV/c²) 120 Z_c GeV/c² 100 Events/(0.005 GeV/c²) 80 $M(D) + M(D^*) \approx 3872 - 3879$ MeV 60 3.8 3.9 4.0 4.1 40 M_{π^*h} (GeV/c²)

20

0

3.95

4.00

4.05

4.10

 $M_{\pi^{\pm}h_c}(GeV/c^2)$

4.15

4.20

4.25

 $M(D^*) + M(D^*) \approx 4014 - 4020 \text{ MeV}$

properties of the $Z_c(3900)$ and $Z_c(4020)$:

- (1) isovector states so clearly not $c\bar{c}$
- (2) seen in $Z_c(3900) \rightarrow \pi J/\psi$
- (3) seen in $Z_c(4020) \rightarrow \pi h_c(1P)$
- (4) close to open-charm thresholds

(5) interpretation depends on lineshapes

THE EUROPEAN PHYSICAL JOURNAL C

AL C CrossMark

Regular Article - Theoretical Physics

The $Z_c(3900)$ peak does not come from the "triangle singularity"

Qin-Rong Gong¹, Jing-Long Pang¹, Yu-Fei Wang¹, Han-Qing Zheng^{1,2,a}

properties of the $Z_c(3900)$ and $Z_c(4020)$:

- (1) isovector states so clearly not $c\bar{c}$
- (2) seen in $Z_c(3900) \rightarrow \pi J/\psi$
- (3) seen in $Z_c(4020) \rightarrow \pi h_c(1P)$
- (4) close to open-charm thresholds

(5) interpretation depends on lineshapes

	Physics Letters B 772 (2017) 200–209	
	Contents lists available at ScienceDirect	
	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	Sanahar

Amplitude analysis and the nature of the $Z_c(3900)$

A. Pilloni^{a,*}, C. Fernández-Ramírez^b, A. Jackura^{c,d}, V. Mathieu^{c,d}, M. Mikhasenko^e, J. Nys^f, A.P. Szczepaniak^{a,c,d}

JPAC Collaboration

IVB. Exotic Charmonium: Z_c from *B* decays

properties of the Z_c seen in *B* decays:

- (1) different from those seen in e^+e^- (??)
- (2) structure in $B \to K \pi J/\psi$
- (3) structure in $B \to K \phi J/\psi$

Z(4430) ψ(4³S₁) 4.4 $\eta_{c}(4^{1}S_{0})$ Y(4360) $\chi_{c2}(3^{3}P_{2})$ h_c(3¹P₁) $\chi_{c1}(3^{3}P_{1})$ Y(4260) $\chi_{c0}(3^{3}P_{0})$ 4.2 ψ(2³D₁) $\psi(3^{3}S_{1})$ Z(4020) 1S₀) [GeV/c²] 4. $\chi_{c2}(2^{3}P_{2})$ Z(3900) h_c(2¹P₁) X(3872) MASS $\chi_{c0}(2^{3}P_{0})$ 3.8 ψ^{′′}(1³D₁) 2M_□ ψ'(2³S₁) η_c′(2¹S₀) 3.6 $\chi_{c2}(1^{3}P_{2})$ $h_{c}(1^{1}P_{1})$ χ_{c1}(1³P₁) χ_{c0}(1³P₀) 3.4 3.2 predicted, discovered J/ψ(1³S₁) predicted, undiscovered 3.0 $\eta_c(1^1S_0)$ unpredicted, discovered 0-+ 1--1+-0++ 2++ 1++ JPC

Charmonium

IVB. Exotic Charmonium: Z_c from B decays

properties of the Z_c seen in *B* decays:

(1) different from those seen in e^+e^- (??)

(2) structure in $B \to K \pi J/\psi$

(3) structure in $B \to K \phi J/\psi$

PHYSICAL REVIEW LETTERS 122, 152002 (2019)

Model-Independent Observation of Exotic Contributions to $B^0 \rightarrow J/\psi K^+\pi^-$ Decays

IVB. Exotic Charmonium: Z_c from *B* decays

properties of the Z_c seen in *B* decays:

Candidates

 $\cos\theta_{J/\psi}$

 $\cos\theta$

-0.5

(1) different from those seen in e^+e^- (??)

(2) structure in $B \to K \pi J/\psi$

(3) structure in $B \to K \phi J/\psi$

ŝ

📥 Total fit

LHCb

LHCb

 $4.2 \\ m_{J/\psi K^+} [\text{GeV}]$

Cor	ntribution	Significance $[\times \sigma]$	M_0 [MeV]	Γ ₀ [MeV]	FF [%]
	All $K(1^+)$	5-8		10[110 1]	$25 + 4^{+}.6^{-6}$
$2^{1}P_{1}$	$K(1^+)$	4.5 (4.5)	$1861 \pm 10^{+16}$	$149 \pm 41^{+231}$	$20 \pm 1 - 15$
$2^{3}P_{1}$	$K'(1^+)$	4.5 (4.5)	$1001 \pm 10 \pm 46$ $1911 \pm 37 \pm 124$	$276 \pm 50^{+319}_{-150}$	
$1^{3}P_{1}$	$K_1(1400)$	9.2(11)	1403	174	$15 \pm 3^{+3}_{-11}$
	All $K(2^-)$	- ()		-	$2.1 \pm 0.4^{+2.0}_{-1.1}$
$1^1 D_2$	$K_2(1770)$	7.9(8.0)	1773	186	- 1.1
$1^{3}D_{2}$	$K_2(1820)$	5.8 (5.8)	1816	276	
	All $K(1^-)$				$50 \pm 4^{+10}_{-19}$
$1^{3}D_{1}$	$K^{*}(1680)$	4.7(13)	1717	322	$14 \pm 2 \frac{+35}{-8}$
2^3S_1	$K^{*}(1410)$	7.7 (15)	1414	232	$38 \pm 5^{+11}_{-17}$
	$K(2^{+})$				
$2^{3}P_{2}$	$K_2^*(1980)$	1.6(7.4)	$1988 \pm 22 {}^{+ 194}_{- 31}$	$318\pm82{}^{+481}_{-101}$	$2.3\pm0.5\pm0.7$
	$K(0^{-})$				
2^1S_0	K(1460)	12(13)	1483	336	$10.2 \pm 1.2 {}^{+ 1.0}_{- 3.8}$
	$X(2^{-})$				
	X(4150)	4.8(8.7)	$4146\pm18\pm33$	$135 \pm 28 {}^{+ 59}_{- 30}$	$2.0\pm0.5{}^{+0.8}_{-1.0}$
	$X(1^{-})$				
	X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+ 18}_{- 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$
	All $X(0^+)$				$20 \pm 5^{+14}_{-7}$
	X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$	$5.6\pm0.7^{+2.4}_{-0.6}$
	X(4700)	17(18)	$4694 \pm 4^{+16}_{-3}$	$87 \pm 8 {}^{+ 16}_{- 6}$	$8.9 \pm 1.2 {}^{+4.9}_{-1.4}$
	$NR_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8^{+19}_{-11}$
	All $X(1^+)$				$26 \pm 3^{+8}_{-10}$
	X(4140)	13(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162\pm21{}^{+24}_{-49}$	$17 \pm 3^{+19}_{-6}$
	X(4274)	18(18)	$4294 \pm 4^{+3}_{-6}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5 {}^{+0.8}_{-0.4}$
	X(4685)	15(15)	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15 {}^{+37}_{-41}$	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$
	All $Z_{cs}(1^+)$				$25 \pm 5^{+11}_{-12}$
	$Z_{cs}(4000)$	15(16)	$4003 \pm 6 {}^{+}_{-14}{}^{4}_{-14}$	$131\pm15\pm26$	$9.4\pm2.1\pm3.4$
	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4^{+10}_{-7}$

monium: Z_c from *B* decays

Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$

arXiv:2103.01803v1 [hep-ex] 2 Mar 2021

LHCb collaboration[†]

The basics of exotic charmonium (or "charmoniumlike" states):

 $\chi_{c1}(3872)$ aka X(3872)

 $\psi(4230)$ and $\psi(4360)$ aka Y(4260) and Y(4360)

 $Z_c(3900)$ and $Z_c(4020)$

 Z_c mesons in *B* decays

Original names (still commonly used):

- Y: mesons made directly in e^+e^-
- Z: "charmonium" with $I \neq 0$.
- X: everything else

Charmonium

IVC. Exotic Bottomonium

The basics of exotic charmonium (or "charmoniumlike" states):

Original names (still commonly used):

- Y: mesons made directly in e^+e^-
- Z: "charmonium" or "bottomonium" with $I \neq 0$.
- X: everything else

Exotic mesons can be distinguished from conventional mesons in at least four ways:

- 1. unusual properties *e.g. X*(3872)
- 2. overpopulation *e.g. Y*(4260), *Y*(4360)
- 3. exotic flavor *e.g.* $Z_c(3900), Z_c(4020)$
- 4. exotic J^{PC} *e.g.* $\pi_1(1600)$

major caveat: an exotic hadron must also be a hadron (as opposed to a scattering artifact, for example)

Charmonium

This talk: charmonium, bottomonium, light quark mesons.

Exotic mesons can be distinguished from conventional mesons in at least four ways:

- 1. unusual properties *e.g. X*(3872)
- 2. overpopulation *e.g. Y*(4260), *Y*(4360)
- 3. exotic flavor *e.g.* $Z_c(3900), Z_c(4020)$
- 4. exotic J^{PC} *e.g.* $\pi_1(1600)$

major caveat: an exotic hadron must also be a hadron (as opposed to a scattering artifact, for example) Light Quark Mesons:

glueballs

q

* lightest is expected to have $J^{PC} = 0^{++}$ * \bar{q} traditionally expected in J/ψ radiative decays

mesons with exotic J^{PC}

- * expect hybrid mesons with $J^{PC} = 1^{-+} (\eta_1, \pi_1)$
- * perhaps produce these with photoproduction
- * (also expected in heavy quark systems)

PHYSICAL REVIEW D 92, 052003 (2015)

Amplitude analysis of the $\pi^0 \pi^0$ system produced in radiative J/ψ decays

(BESIII Collaboration) A. P. Szczepaniak,^{19,53,54} and P. Guo^{19,53}

PHYSICAL REVIEW D 92, 052003 (2015)

Amplitude analysis of the $\pi^0 \pi^0$ system produced in radiative J/ψ decays

(BESIII Collaboration) A. P. Szczepaniak,^{19,53,54} and P. Guo^{19,53}

Physics Letters B 816 (2021) 136227

Scalar isoscalar mesons and the scalar glueball from radiative J/ψ decays

A.V. Sarantsev^{a,b}, I. Denisenko^c, U. Thoma^a, E. Klempt^{a,*}

$10 f_0$ states! but no explicit glueball?

Name	$f_0(500)$	$f_0(1370)$	$f_0(1710)$	$f_0(2020)$	$f_0(2200)$
M [MeV]	410±20	1370±40	1700±18	1925±25	2200±25
Γ [MeV]	$400 \rightarrow 550$ 480 ± 30 $400 \rightarrow 700$	$1200 \rightarrow 1500$ 390±40 100→500	1704±12 255±25 123±18	1992±16 320±35 442±60	$2187{\pm}14$ 150 ${\pm}30$ ~200
Name	$f_0(980)$	$f_0(1500)$	$f_0(1770)$	$f_0(2100)$	$f_0(2330)$
Name M [MeV]	<i>f</i> ₀ (980) 1014±8	$f_0(1500)$ 1483 ± 15	$f_0(1770)$ 1765±15	$f_0(2100)$ 2075±20	$f_0(2330)$ 2340±20

maybe the glueball is apparent in the J/ψ couplings??

Exotic mesons can be distinguished from conventional mesons in at least four ways:

- 1. unusual properties e.g. X(3872)
- 2. overpopulation *e.g. Y*(4260), *Y*(4360)
- 3. exotic flavor *e.g.* $Z_c(3900), Z_c(4020)$
- 4. exotic J^{PC} *e.g.* $\pi_1(1600)$

major caveat: an exotic hadron must also be a hadron (as opposed to a scattering artifact, for example) Light Quark Mesons:

glueballs

q

* lightest is expected to have $J^{PC} = 0^{++}$ * $\bar{q}_{traditionally}$ expected in J/ψ radiative decays

mesons with exotic J^{PC}

- * expect hybrid mesons with $J^{PC} = 1^{-+} (\eta_1, \pi_1)$
- * perhaps produce these with photoproduction
- * (also expected in heavy quark systems)

Physics Letters B 740 (2015) 303-311

Odd and even partial waves of $\eta\pi^-$ and $\eta'\pi^-$ in $\pi^-p \to \eta^{(\prime)}\pi^-p$ at 191 GeV/*c*

COMPASS Collaboration

PHYSICAL REVIEW LETTERS 122, 042002 (2019)

Determination of the Pole Position of the Lightest Hybrid Meson Candidate

A. Rodas,^{1,*} A. Pilloni,^{2,3,†} M. Albaladejo,^{2,4} C. Fernández-Ramírez,⁵ A. Jackura,^{6,7} V. Mathieu,² M. Mikhasenko,⁸ J. Nys,⁹ V. Pauk,¹⁰ B. Ketzer,⁸ and A. P. Szczepaniak^{2,6,7}

(Joint Physics Analysis Center)

PHYSICAL REVIEW LETTERS 122, 042002 (2019)

Determination of the Pole Position of the Lightest Hybrid Meson Candidate

A. Rodas,^{1,*} A. Pilloni,^{2,3,†} M. Albaladejo,^{2,4} C. Fernández-Ramírez,⁵ A. Jackura,^{6,7} V. Mathieu,²
 M. Mikhasenko,⁸ J. Nys,⁹ V. Pauk,¹⁰ B. Ketzer,⁸ and A. P. Szczepaniak^{2,6,7}

(Joint Physics Analysis Center)

Exotic mesons can be distinguished from conventional mesons in at least four ways:

- 1. unusual properties *e.g. X*(3872)
- 2. overpopulation *e.g. Y*(4260), *Y*(4360)
- 3. exotic flavor *e.g.* $Z_c(3900), Z_c(4020)$
- 4. exotic J^{PC} *e.g.* $\pi_1(1600)$

major caveat: an exotic hadron must also be a hadron (as opposed to a scattering artifact, for example)

This talk: charmonium, bottomonium, light quark mesons.

HUGS 2021 Lectures on: Experimental Meson Spectroscopy

Prologue: Definitions and Philosophy

- I. A Field Guide to Meson Families
- II. Meson Quantum Numbers
- III. The Quark Model
- IV. Exotic Mesons
- V. Current and Future Experiments

LECTURE IV. Exotic Mesons

- IVA. Exotic Meson Identification
- IVB. Exotic Charmonium
- IVC. Exotic Bottomonium
- IVD. Exotic Light Quark Mesons

Ryan Mitchell

Senior Scientist Indiana University (<u>remitche@indiana.edu</u>)

HUGS 2021 Lectures on: Experimental Meson Spectroscopy

Prologue: Definitions and Philosophy

- I. A Field Guide to Meson Families
- II. Meson Quantum Numbers
- III. The Quark Model
- IV. Exotic Mesons
- V. Current and Future Experiments

LECTURE IV. Exotic Mesons

Exotic mesons (and baryons) can offer new insight into quark and gluon interactions.

Many exotic meson candidates exist and many more are being discovered.

The field is active, but there are currently very few firm conclusions.

Ryan Mitchell Senior Scientist Indiana University (<u>remitche@indiana.edu</u>)

IV