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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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Quark Model:  Assume hadrons are made of quarks interacting via a potential.
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This paper gives results for the spectrum, all allowed E1 radiative partial widths (and some important
M1 widths) and all open-charm strong decay amplitudes of all 40 c !c states expected up to the mass of the
4S multiplet, just above 4.4 GeV. The spectrum and radiative widths are evaluated using two models, the
relativized Godfrey-Isgur model and a nonrelativistic potential model. The electromagnetic transitions are
evaluated using Coulomb plus linear plus smeared hyperfine wave functions, both in a nonrelativistic
potential model and in the Godfrey-Isgur model. The open-flavor strong decay amplitudes are determined
assuming harmonic oscillator wave functions and the 3P0 decay model. This work is intended to motivate
future experimental studies of higher-mass charmonia, and may be useful for the analysis of high-statistics
data sets to be accumulated by the BES, CLEO, and GSI facilities.

DOI: 10.1103/PhysRevD.72.054026 PACS numbers: 12.39.2x, 13.20.Gd, 13.25.Gv, 14.40.Gx

INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine) tensor (hyperfine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.

c c
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with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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which suggests that nonexotic hybrids may be more easily
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(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.
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mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)
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INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.
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FIG. 9. Flux densities ΔF2
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We compute chromoelectric and chromomagnetic flux densities for hybrid static potentials in SU(2)
and SU(3) lattice gauge theory. In addition to the ordinary static potential with quantum numbers Λϵ

η ¼ Σþ
g ,

we present numerical results for seven hybrid static potentials corresponding to ΛðϵÞ
η ¼ Σþ

u ;Σ−
g ;

Σ−
u ;Πg;Πu;Δg;Δu, where the flux densities of five of them are studied for the first time in this work.

We observe hybrid static potential flux tubes, which are significantly different from that of the ordinary
static potential. They are reminiscent of vibrating strings, with localized peaks in the flux densities that can
be interpreted as valence gluons.
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I. INTRODUCTION

The majority of mesons, i.e., hadrons with integer total
angular momentum, are quark-antiquark pairs. It is, how-
ever, expected that some mesons, so-called exotic mesons,
have a more complicated composition in terms of quarks
and gluons. An important example is hybrid mesons, where
gluons contribute to the quantum numbers JPC (J: total
angular momentum; P: parity; C: charge conjugation) in a
nontrivial way. In the quark model, where mesons are
quark-antiquark pairs, quantum numbers are restricted to
P ¼ ð−1ÞLþ1 and C ¼ ð−1ÞLþS with spin S ¼ 0; 1 and
orbital angular momentum L ¼ 0; 1; 2;…. Thus, mesons
with JPC ¼ 0þ−; 0−−; 1−þ; 2þ−;…, which are not allowed
in the quark model, are obvious candidates for exotic
mesons like hybrids. Moreover, a higher density of states
than obtained by the quark model might also indicate
hybrid mesons.
Experimentally observed examples, which could be

hybrid mesons, are the JPC ¼ 1−þ states π1ð1400Þ and
π1ð1600Þ. They could, however, also be tetraquarks, i.e.,
two quarks and two antiquarks without excited glue. For
heavy-heavy mesons, the situation seems to be even less
clear. There are several exotic candidates, which could be
hybrid mesons, but for none of them does such an
interpretation seem to be likely (see, e.g., the experimental
review of exotic hadrons [1] and the discussion in
Sec. VII.A of Ref. [2]). Thus, the search for gluonic
excitations is an important part of the research program

of current and future experiments, e.g., the GlueX experi-
ment at the JLab accelerator or the PANDA experiment at
the FAIR accelerator.
Also on the theoretical side, there are many open

questions concerning hybrid mesons (see, e.g., the theo-
retical reviews [3–6]). They are difficult to study because in
QCD total angular momentum J and parity P are not
separately conserved for gluons on the one hand and for the
quark-antiquark pair on the other hand. Only the overall JP

are quantum numbers. For heavy hybrid mesons, e.g.,
composed of a b and a b̄ quark and gluons, a simplification
and good approximation is to study the static limit. In that
limit, the quark positions are frozen, which allows one to
separate the treatment of gluons and quarks.
In this work, we use SU(2) and SU(3) lattice gauge

theory to study heavy hybrid mesons in the static limit. For
quite some time, hybrid static potentials haven been
computed by various groups, mainly with the intention
to compute masses of heavy hybrid mesons using the Born-
Oppenheimer approximation (see Refs. [7–31] and the
recent review article [32]). We focus on a different problem,
the computation of the gluonic flux densities for hybrid
potential states, i.e., the structure of the flux tube, for
several hybrid channels. While such flux tubes have been
studied for the ordinary static potential using lattice gauge
theory for quite some time (see Refs. [33–48]), this is a
rather new direction for hybrid static potentials, where
first results appeared only recently [49–52]. In this paper,
we substantially extend existing work by performing
computations for seven hybrid static potential sectors
characterized by quantum numbers ΛðϵÞ

η ¼ Σþ
u ;Σ−

g ;Σ−
u ;Πg;

Πu;Δg;Δu. Five of these sectors are studied for the first
time, where preliminary results have been presented at a
recent conference [52].
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is

V#c !c$
0 #r$ % ! 4

3

!s
r
" br" 32"!s

9m2
c

~#$#r$ ~Sc & ~S !c; (1)

where ~#$#r$ % #$=
!!!!
"
p $3e!$2r2

. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly

Vspin-dep %
1

m2
c

"#
2!s
r3 !

b
2r

$
~L & ~S" 4!s

r3 T
%
: (2)

The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are

h3LJjTj3LJi %

8>>><
>>>:

! L
6#2L"3$ ; J % L" 1

" 1
6 ; J % L

! #L"1$
6#2L!1$ ; J % L! 1

: (3)

For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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meson continua, which has been cited as a possible reason
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including meson loops can presumably be studied effec-
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quark model is surprising, in view of the probable impor-
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range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.
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As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
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INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.

A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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Just as in the nonrelativistic model, the quark-antiquark

potential Vq !q# ~p; ~r$ assumed here incorporates the Lorentz
vector one gluon exchange interaction at short distances
and a Lorentz scalar linear confining interaction. To first
order in #vq=c$2, Vq !q# ~p; ~r$ reduces to the standard non-
relativistic result given by Eqs. (1) and (2) (with !s re-
placed by a running coupling constant, !s#r$). The full set
of model parameters is given in Ref. [51]. Note that the
string tension and quark mass (b ! 0:18 GeV2 and mc !
1:628 GeV) are significantly larger than the values used in
our nonrelativistic model.

One important aspect of this model is that it gives
reasonably accurate results for the spectrum and matrix
elements of quarkonia of all u, d, s, c, b quark flavors,
whereas the nonrelativistic model of the previous section is
only fitted to the c !c system.

C. Discussion

The spectra predicted by the NR and GI models (Table I
and Fig. 1) are quite similar for S- and P-wave states,
largely because of the constraints provided by the experi-
mental c !c candidates for these multiplets. We note in
passing that these potential model results are very similar
to the most recent predictions of the charmonium spectrum
from LGT [38,52,53]. At higher L we have only the L ! 2
13D1 and 23D1 states  #3770$ and  #4159$ to constrain the
models, and the predicted mean D-wave multiplet masses
differ by ca. 50 MeV. For L > 2 the absence of experimen-
tal states allows a relatively large scatter of predicted mean
masses, which differ by as much as % 100 MeV in the 1G
multiplet. (The splittings within higher-L multiplets in
contrast are rather similar.) The mean multiplet masses
predicted by the two models differ largely because of the
values assumed for the string tension b, which is
0:18 GeV2 in the GI model but is a rather smaller

TABLE I. Experimental and theoretical spectrum of c !c states.
The experimental masses are PDG averages, which are rounded
to 1 MeV and assigned equal weights in the theoretical fits. For
the 21S0 "0c#3638$ we use a world average of recent measure-
ments [50].

Multiplet State Expt. Input (NR) Theor.
NR GI

1S J= #13S1$ 3096:87& 0:04 3097 3090 3098
"c#11S0$ 2979:2& 1:3 2979 2982 2975

2S  0#23S1$ 3685:96& 0:09 3686 3672 3676
"0c#21S0$ 3637:7& 4:4 3638 3630 3623

3S  #33S1$ 4040& 10 4040 4072 4100
"c#31S0$ 4043 4064

4S  #43S1$ 4415& 6 4415 4406 4450
"c#41S0$ 4384 4425

1P #2#13P2$ 3556:18& 0:13 3556 3556 3550
#1#13P1$ 3510:51& 0:12 3511 3505 3510
#0#13P0$ 3415:3& 0:4 3415 3424 3445
hc#11P1$ see text 3516 3517

2P #2#23P2$ 3972 3979
#1#23P1$ 3925 3953
#0#23P0$ 3852 3916
hc#21P1$ 3934 3956

3P #2#33P2$ 4317 4337
#1#33P1$ 4271 4317
#0#33P0$ 4202 4292
hc#31P1$ 4279 4318

1D  3#13D3$ 3806 3849
 2#13D2$ 3800 3838
 #13D1$ 3769:9& 2:5 3770 3785 3819
"c2#11D2$ 3799 3837

2D  3#23D3$ 4167 4217
 2#23D2$ 4158 4208
 #23D1$ 4159& 20 4159 4142 4194
"c2#21D2$ 4158 4208

1F #4#13F4$ 4021 4095
#3#13F3$ 4029 4097
#2#13F2$ 4029 4092
hc3#11F3$ 4026 4094

2F #4#23F4$ 4348 4425
#3#23F3$ 4352 4426
#2#23F2$ 4351 4422
hc3#21F3$ 4350 4424

1G  5#13G5$ 4214 4312
 4#13G4$ 4228 4320
 3#13G3$ 4237 4323
"c4#11G4$ 4225 4317
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FIG. 1. Predicted and observed spectrum of charmonium states
(Table I). The solid lines are experiment, and the broken lines are
theory (NR model left, GI right). Spin-triplet levels are dashed
lines, and spin-singlets are dotted lines. The DD open-charm
threshold at 3.73 GeV is also shown.
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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erties of charmonium states, notably the poorly understood
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potential models are used in this study, a conventional
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with a Coulomb plus linear potential, and the Godfrey-
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and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
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tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.
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As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)
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tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.
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A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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artifact of an O#v2
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so replacing it by an interaction with a range 1=$ compa-
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)
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and replaces factors of quark mass with quark kinetic
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INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.

H 0 !
!!!!!!!!!!!!!!!!!!
~p2
q "m2

q

q
"

!!!!!!!!!!!!!!!!!!
~p2

!q "m2
!q

q
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Just as in the nonrelativistic model, the quark-antiquark

potential Vq !q# ~p; ~r$ assumed here incorporates the Lorentz
vector one gluon exchange interaction at short distances
and a Lorentz scalar linear confining interaction. To first
order in #vq=c$2, Vq !q# ~p; ~r$ reduces to the standard non-
relativistic result given by Eqs. (1) and (2) (with !s re-
placed by a running coupling constant, !s#r$). The full set
of model parameters is given in Ref. [51]. Note that the
string tension and quark mass (b ! 0:18 GeV2 and mc !
1:628 GeV) are significantly larger than the values used in
our nonrelativistic model.

One important aspect of this model is that it gives
reasonably accurate results for the spectrum and matrix
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TABLE I. Experimental and theoretical spectrum of c !c states.
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Multiplet State Expt. Input (NR) Theor.
NR GI

1S J= #13S1$ 3096:87& 0:04 3097 3090 3098
"c#11S0$ 2979:2& 1:3 2979 2982 2975

2S  0#23S1$ 3685:96& 0:09 3686 3672 3676
"0c#21S0$ 3637:7& 4:4 3638 3630 3623

3S  #33S1$ 4040& 10 4040 4072 4100
"c#31S0$ 4043 4064

4S  #43S1$ 4415& 6 4415 4406 4450
"c#41S0$ 4384 4425

1P #2#13P2$ 3556:18& 0:13 3556 3556 3550
#1#13P1$ 3510:51& 0:12 3511 3505 3510
#0#13P0$ 3415:3& 0:4 3415 3424 3445
hc#11P1$ see text 3516 3517

2P #2#23P2$ 3972 3979
#1#23P1$ 3925 3953
#0#23P0$ 3852 3916
hc#21P1$ 3934 3956

3P #2#33P2$ 4317 4337
#1#33P1$ 4271 4317
#0#33P0$ 4202 4292
hc#31P1$ 4279 4318

1D  3#13D3$ 3806 3849
 2#13D2$ 3800 3838
 #13D1$ 3769:9& 2:5 3770 3785 3819
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 #23D1$ 4159& 20 4159 4142 4194
"c2#21D2$ 4158 4208
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2F #4#23F4$ 4348 4425
#3#23F3$ 4352 4426
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 3#13G3$ 4237 4323
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FIG. 1. Predicted and observed spectrum of charmonium states
(Table I). The solid lines are experiment, and the broken lines are
theory (NR model left, GI right). Spin-triplet levels are dashed
lines, and spin-singlets are dotted lines. The DD open-charm
threshold at 3.73 GeV is also shown.
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
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(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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strong partial and total widths for states above open-charm
threshold.
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The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.
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nonrelativistic potential model, with wave functions deter-
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potential. The central potential is
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential
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INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.
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IIIA.  Charmonium Potential
Quark Model:  Assume hadrons are made of quarks interacting via a potential.
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Figure 3. Charmonium spectrum up to around 4.5GeV labelled by JPC ; the left (right) panel
shows the negative (positive) parity states. Green, red and blue boxes are the masses computed on
our Mπ ∼ 240MeV ensemble while black boxes are experimental values from the PDG summary
tables [1]. As discussed in the text, we show the calculated (experimental) masses with the calculated
(experimental) ηc mass subtracted. The vertical size of the boxes represents the one-sigma statistical
(or experimental) uncertainty on either side of the mean. Red and blue boxes correspond to states
identified as hybrid mesons grouped into, respectively, the lightest and first-excited supermultiplet,
as described in the text. Dashed lines show the location of some of the lower thresholds for strong
decay using computed (coarse green dashing) and experimental (fine grey dashing) masses.

large overlaps onto operators that are proportional to the spatial components of the field

strength tensor, Fij (i.e. operators that have a non-trivial gluonic structure), something not

seen for the other states in the spectrum. Furthermore, on removing operators proportional

to Fij from the variational basis we generally observe a reduction in the quality of the signal

for these states. We therefore follow refs. [21, 22] and interpret these excess states as hybrid

mesons.

As discussed in detail in ref. [22], the hybrid states can be grouped into supermultiplets.

We find that the set [(0−+, 1−+, 2−+), 1−−], highlighted in red in figure 3, forms the lightest

charmonium hybrid supermultiplet, while the states highlighted in blue, (0++, 1++, 2++),

(0+−, 1+−, 1+−, 1+−, 2+−, 2+−, 3+−), form the first excited hybrid supermultiplet. These

patterns are consistent with a quark-antiquark pair coupled to a 1+− gluonic excitation;

the lightest hybrid supermutiplet has the quark-antiquark pair in S-wave and the first

excited hybrid supermultiplet has it in P -wave. The lightest hybrids appear ∼ 1.2–1.3GeV

above the lightest S-wave meson multiplet. This pattern of hybrids and their energy scale
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Figure 3. Charmonium spectrum up to around 4.5GeV labelled by JPC ; the left (right) panel
shows the negative (positive) parity states. Green, red and blue boxes are the masses computed on
our Mπ ∼ 240MeV ensemble while black boxes are experimental values from the PDG summary
tables [1]. As discussed in the text, we show the calculated (experimental) masses with the calculated
(experimental) ηc mass subtracted. The vertical size of the boxes represents the one-sigma statistical
(or experimental) uncertainty on either side of the mean. Red and blue boxes correspond to states
identified as hybrid mesons grouped into, respectively, the lightest and first-excited supermultiplet,
as described in the text. Dashed lines show the location of some of the lower thresholds for strong
decay using computed (coarse green dashing) and experimental (fine grey dashing) masses.

large overlaps onto operators that are proportional to the spatial components of the field

strength tensor, Fij (i.e. operators that have a non-trivial gluonic structure), something not

seen for the other states in the spectrum. Furthermore, on removing operators proportional

to Fij from the variational basis we generally observe a reduction in the quality of the signal

for these states. We therefore follow refs. [21, 22] and interpret these excess states as hybrid

mesons.

As discussed in detail in ref. [22], the hybrid states can be grouped into supermultiplets.

We find that the set [(0−+, 1−+, 2−+), 1−−], highlighted in red in figure 3, forms the lightest

charmonium hybrid supermultiplet, while the states highlighted in blue, (0++, 1++, 2++),

(0+−, 1+−, 1+−, 1+−, 2+−, 2+−, 3+−), form the first excited hybrid supermultiplet. These

patterns are consistent with a quark-antiquark pair coupled to a 1+− gluonic excitation;

the lightest hybrid supermutiplet has the quark-antiquark pair in S-wave and the first

excited hybrid supermultiplet has it in P -wave. The lightest hybrids appear ∼ 1.2–1.3GeV

above the lightest S-wave meson multiplet. This pattern of hybrids and their energy scale
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Abstract: We present highly-excited charmonium, Ds and D meson spectra from dy-

namical lattice QCD calculations with light quarks corresponding to Mπ ∼ 240MeV and

compare these to previous results with Mπ ∼ 400MeV. Utilising the distillation framework,

large bases of carefully constructed interpolating operators and a variational procedure, we

extract and reliably identify the continuum spin of an extensive set of excited mesons.

These include states with exotic quantum numbers which, along with a number with non-

exotic quantum numbers, we identify as having excited gluonic degrees of freedom and

interpret as hybrid mesons. Comparing the spectra at the two different Mπ, we find only

a mild light-quark mass dependence and no change in the overall pattern of states.
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IIIA.  Charmonium Potential
where O are gauge-invariant combinations of quark and
gluon fields (expressed via the parallel transporters, or
‘‘links’’ of the lattice) that have the desired hadron quan-
tum numbers. Detailed discussion of the methodology
required to extract an excited-state spectrum with deter-
mined continuum JPC quantum numbers can be found
in [14]—here, we summarize just the salient points.
The quantities extracted from the calculations are the
state masses, mn, and vacuum-operator-state ‘‘overlaps’’,
Zn
i ! hnjOij0i, that appear in a spectral decomposition of

a two-point correlation function,

CijðtÞ ¼ h0jOiðtÞOjð0Þj0i ¼
X

n

Zn
i Z

n
j

2mn

e%mnt;

where the sum is over all eigenstates, jni, of the QCD
Hamiltonian in finite volume with the same quantum num-
bers as the operators Oi;j. There is a variational method of
analysis [30,31] that analyzes a matrix of such correlators
built using a basis of operators, returning best estimates for
masses and overlaps.

In [14], a large operator basis for mesons was built
using fermion bilinears projected onto zero meson momen-
tum, featuring up to three gauge-covariant derivatives2

(d ¼ 0, 1, 2, 3),

X

~x

hJ!m!; JDmDjJ;Mi½ "c!m!
D½d'

JD;mD
c 'ð ~xÞ;

where

D½1'
JD¼1;m ¼ ~!ðmÞ (D$;

D½2'
JD¼f0;1;2g;m ¼ h1; m1; 1; m2jJD;miD½1'

JD¼1;m1
D½1'

JD¼1;m2
;

and where the three-derivative construction can be found
in [14]. The use of a circular polarization basis, ~!ðmÞ,
for the derivatives, enables the use of simple SOð3Þ
Clebsch-Gordan coefficients for the angular momentum
constructions.

The quark fields featuring in these expressions do not
just exist on a single site on the lattice—they are smeared
over space in a gauge-invariant way. The particular form of
smearing used is ‘‘distillation’’[32], which proves to be a
highly efficient way to compute a large number of corre-
lators with operators that sample dominantly the lowest
energy modes of QCD relevant to low-lying hadron states.
Furthermore, all gauge-fields entering into the operator
construction are smeared in a gauge-covariant manner
known as ‘‘stout-smearing’’[33] that preserves transforma-
tional properties of the original fields. The consistent

use of gauge-invariant constructions is relevant since the
computation is not performed in any fixed gauge.
The calculations reported in [14] were performed on

dynamical anisotropic Clover lattices with three flavors
of quark, the lightest two of which are mass degenerate
and the third is tuned to describe the strange quark. The
lattice spacing in the spatial directions is as ) 0:12 fm,
and this proves to be fine enough to see an effective
restoration of rotational symmetry at the scale of hadrons.
The temporal direction has a finer spacing corresponding
to a%1

t ) 5:6 GeV that gives an excellent resolution of the
time-dependence of hadron two-point correlators. With the
strange-quark mass held fixed, light-quark masses corre-
sponding to pions of mass between 400 and 700 MeV
were considered. Spatial volumes were L3 ) ð2:0 fmÞ3,
ð2:5 fmÞ3 and no significant trends in volume dependence
were observed in the extracted spectra. This fact was used
to argue that these calculations are not resolving the ex-
pected physics of excited states as resonances in meson-
meson scattering. In a finite volume, one would expect a
discrete and volume-dependent spectrum of meson-meson
energy levels that were not observed. The spectrum that
was observed was thus interpreted as ‘‘single-hadron’’
states whose resonant nature cannot be explored without
adding to the calculation operators resembling pairs of
hadrons. In this paper, we will explore the possible
bound-state compositions of these single-hadron states.
Quantities extracted from the lattice calculation are

dimensionless, dimensionful quantities being scaled
by an appropriate power of the lattice spacing—for ex-
ample, a mass would be extracted as atm, where, if at is
determined, we can scale-set and obtain a mass in MeV.
Scale-setting in a calculation with unphysically heavy
quarks is an ambiguous procedure since there is no experi-
mental quantity that we can compare it with to set the scale.
We choose a simple but mass-dependent procedure to set
the scale—all mass-dimension quantities are scaled as
follows,

m ¼ ðatmÞ
ðatm#Þ

mphys
# ;

where ðatm#Þ is the dimensionless mass of the # baryon

computed on this lattice and mphys
# is the experimental

mass.
We will focus initially in this paper on the spectrum

results obtained at the heaviest ‘‘light’’ quark mass, where
all three quarks are at the strange-quark mass and the
corresponding pion mass is )700 MeV. We will see that
the qualitative features observed in the spectrum will
change relatively little as the pion mass is reduced to
)400 MeV. The spectrum of isovector states extracted is
shown in Fig. 1, where we see the benefits of using a large
basis in the number of excited states extracted in a given
JPC and the range of JPC considered.

2The ‘‘forward-backward’’ gauge-covariant derivative
D
$

" ¼ @Q" % ~@" % 2igA" makes construction of operators of
definite charge-conjugation relatively simple. On a cubic lattice,
the derivatives are implemented via parallel-transported finite-
differences featuring the SUð3Þ matrices living on the links.
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We interpret the spectrum of meson states recently obtained in nonperturbative lattice QCD calculations

in terms of constituent quark-antiquark bound states and states, called ‘‘hybrids’’, in which the q !q pair is

supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons

with JPC ¼ ð0; 1; 2Þ$þ; 1$$ built from a gluonic excitation of chromomagnetic character coupled to q !q in

an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic

excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic

excitations are compared to these findings and possible phenomenological consequences explored.
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I. INTRODUCTION

Models of hadrons as bound states of minimal numbers
of ‘‘constituent’’ or ‘‘dressed’’ quarks [1,2] can be moti-
vated by the description of the flavor and JPðCÞ systematics
of experimental meson and baryon spectra [3]. In particu-
lar, the absence of meson states with isospin greater than 1
or magnitude of strangeness greater than 1 suggests a
picture in which mesons are constituent quark-antiquark
states where these constituent quarks have the same flavor
quantum numbers as the quarks in the QCD Lagrangian.
Higher Fock-state configurations, such as qq !q !q , would in
general give rise to flavor configurations not observed
experimentally. Furthermore, all well-established states
have JPC within the set 0$þ; 0þþ; 1$$; 1þ$; 1þþ;
2$þ; 2þþ . . . , all of which are accessible to a fermion-
antifermion pair with orbital angular momentum, L. This
suggests that the constituent quark degrees-of-freedom
have spin-1=2 and the ordering of states in the spectrum
implies increasing energy with increasing L. There is some
theoretical support for the idea that constituent quarks with
effective mass (at low energy scales) of several hundred
MeV arise out of the almost massless quarks of the QCD
Lagrangian in the process of spontaneous chiral symmetry
breaking (see, e.g. [4–6]).

Although the gross features of the experimental spec-
trum strongly suggests this q !q structure assignment for
most states, such simplicity looks peculiar when viewed
from the perspective of QCD, in which quarks couple
strongly to a self-interacting gluonic field. From the ge-
neric properties of QCD, we might expect to have states in
which the gluonic field itself is excited and carries JPC

quantum numbers. Absent any ‘‘valence’’ quark content,
such a state is called a ‘‘glueball’’ and these basis states
would be expected to appear mixed into the spectrum of
isoscalar mesons [7,8]. The addition of a constituent quark-
antiquark pair to an excited gluonic field gives us what we

term a ‘‘hybrid’’ meson, where these states have the flavor
quantum numbers accessible to q !q. They do not simply
augment the regular q !q spectrum, however, since the

excited gluonic field could carry J
PgCg
g quantum numbers

other than 0þþ. The gluonic quantum numbers can couple
to the q !q quantum numbers to give rise to so-called
‘‘exotic’’ meson JPC, literally, those not accessible to a
q !q pair alone. Observation of a state with quantum num-
bers in this set, 0$$; 0þ$; 1$þ; 2þ$; 3$þ . . . , is considered
a ‘‘smoking gun’’ signature for states beyond the simple q !q
assignment.
Now, since the constituent q !q picture was largely moti-

vated by the absence of such exotic JPC states in the
observed spectrum, we must question why they have not
been observed. Possibilities include a large energy scale
associated with gluonic excitations, that places the states
in a high mass region that has not been explored.
Alternatively, the mass scale may be modest, but the states
may have production/decay characteristics sufficiently dif-
ferent from q !q mesons that experiments have thus far
missed them [9,10].
At present, the experimental situation surrounding ex-

otic JPC mesons is confused, with 1$þ states claimed and
disclaimed in several final states (see the review in [10]),
while other exotic JPC are essentially unexplored. There is
hope that in the current decade we will see new data from
GlueX, CLAS12, BESIII, Compass and PANDA that,
through properly constrained analysis, will indicate defin-
itively the presence or absence of exotic JPC states in the
light-meson spectrum.
From the theoretical side, estimates of hybrid meson

properties have traditionally followed from models which
proceed from an assumed form for the gluonic excitation.
There are a spread of such models and they make divergent
predictions for the spectrum that, in the absence of clear
experimental results, cannot be tested. Lattice QCD offers
the possibility of computing meson properties directly
from QCD, through numerical computation of the QCD
path integral under the controlled approximation of a finite,*dudek@jlab.org
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EXPERIMENT

MODELS

H 0 !
!!!!!!!!!!!!!!!!!!
~p2
q "m2

q

q
"

!!!!!!!!!!!!!!!!!!
~p2

!q "m2
!q

q
: (5)

Just as in the nonrelativistic model, the quark-antiquark

potential Vq !q# ~p; ~r$ assumed here incorporates the Lorentz
vector one gluon exchange interaction at short distances
and a Lorentz scalar linear confining interaction. To first
order in #vq=c$2, Vq !q# ~p; ~r$ reduces to the standard non-
relativistic result given by Eqs. (1) and (2) (with !s re-
placed by a running coupling constant, !s#r$). The full set
of model parameters is given in Ref. [51]. Note that the
string tension and quark mass (b ! 0:18 GeV2 and mc !
1:628 GeV) are significantly larger than the values used in
our nonrelativistic model.

One important aspect of this model is that it gives
reasonably accurate results for the spectrum and matrix
elements of quarkonia of all u, d, s, c, b quark flavors,
whereas the nonrelativistic model of the previous section is
only fitted to the c !c system.

C. Discussion

The spectra predicted by the NR and GI models (Table I
and Fig. 1) are quite similar for S- and P-wave states,
largely because of the constraints provided by the experi-
mental c !c candidates for these multiplets. We note in
passing that these potential model results are very similar
to the most recent predictions of the charmonium spectrum
from LGT [38,52,53]. At higher L we have only the L ! 2
13D1 and 23D1 states  #3770$ and  #4159$ to constrain the
models, and the predicted mean D-wave multiplet masses
differ by ca. 50 MeV. For L > 2 the absence of experimen-
tal states allows a relatively large scatter of predicted mean
masses, which differ by as much as % 100 MeV in the 1G
multiplet. (The splittings within higher-L multiplets in
contrast are rather similar.) The mean multiplet masses
predicted by the two models differ largely because of the
values assumed for the string tension b, which is
0:18 GeV2 in the GI model but is a rather smaller

TABLE I. Experimental and theoretical spectrum of c !c states.
The experimental masses are PDG averages, which are rounded
to 1 MeV and assigned equal weights in the theoretical fits. For
the 21S0 "0c#3638$ we use a world average of recent measure-
ments [50].

Multiplet State Expt. Input (NR) Theor.
NR GI

1S J= #13S1$ 3096:87& 0:04 3097 3090 3098
"c#11S0$ 2979:2& 1:3 2979 2982 2975

2S  0#23S1$ 3685:96& 0:09 3686 3672 3676
"0c#21S0$ 3637:7& 4:4 3638 3630 3623

3S  #33S1$ 4040& 10 4040 4072 4100
"c#31S0$ 4043 4064

4S  #43S1$ 4415& 6 4415 4406 4450
"c#41S0$ 4384 4425

1P #2#13P2$ 3556:18& 0:13 3556 3556 3550
#1#13P1$ 3510:51& 0:12 3511 3505 3510
#0#13P0$ 3415:3& 0:4 3415 3424 3445
hc#11P1$ see text 3516 3517

2P #2#23P2$ 3972 3979
#1#23P1$ 3925 3953
#0#23P0$ 3852 3916
hc#21P1$ 3934 3956

3P #2#33P2$ 4317 4337
#1#33P1$ 4271 4317
#0#33P0$ 4202 4292
hc#31P1$ 4279 4318

1D  3#13D3$ 3806 3849
 2#13D2$ 3800 3838
 #13D1$ 3769:9& 2:5 3770 3785 3819
"c2#11D2$ 3799 3837

2D  3#23D3$ 4167 4217
 2#23D2$ 4158 4208
 #23D1$ 4159& 20 4159 4142 4194
"c2#21D2$ 4158 4208

1F #4#13F4$ 4021 4095
#3#13F3$ 4029 4097
#2#13F2$ 4029 4092
hc3#11F3$ 4026 4094

2F #4#23F4$ 4348 4425
#3#23F3$ 4352 4426
#2#23F2$ 4351 4422
hc3#21F3$ 4350 4424

1G  5#13G5$ 4214 4312
 4#13G4$ 4228 4320
 3#13G3$ 4237 4323
"c4#11G4$ 4225 4317

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

M [GeV]

S P

ψ(3770)

D

ψ(4159)

ψ’(3686)

ψ(3097)

ηc(2979)

χ2(3556)

χ0(3415)

χ1(3511)

η’c(3638)

J/
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0-

2+

1+

1-

ψ(4040)

ψ(4415)

F G
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1-

0-
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DD

FIG. 1. Predicted and observed spectrum of charmonium states
(Table I). The solid lines are experiment, and the broken lines are
theory (NR model left, GI right). Spin-triplet levels are dashed
lines, and spin-singlets are dotted lines. The DD open-charm
threshold at 3.73 GeV is also shown.
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THEORYThe goal of experimental meson (hadron)  
spectroscopy:

Uncover a broad set of physical phenomena  
(including new meson states, their properties, decays patterns, etc.)
in order to build our understanding of the strong force. 
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Figure 3. Charmonium spectrum up to around 4.5GeV labelled by JPC ; the left (right) panel
shows the negative (positive) parity states. Green, red and blue boxes are the masses computed on
our Mπ ∼ 240MeV ensemble while black boxes are experimental values from the PDG summary
tables [1]. As discussed in the text, we show the calculated (experimental) masses with the calculated
(experimental) ηc mass subtracted. The vertical size of the boxes represents the one-sigma statistical
(or experimental) uncertainty on either side of the mean. Red and blue boxes correspond to states
identified as hybrid mesons grouped into, respectively, the lightest and first-excited supermultiplet,
as described in the text. Dashed lines show the location of some of the lower thresholds for strong
decay using computed (coarse green dashing) and experimental (fine grey dashing) masses.

large overlaps onto operators that are proportional to the spatial components of the field

strength tensor, Fij (i.e. operators that have a non-trivial gluonic structure), something not

seen for the other states in the spectrum. Furthermore, on removing operators proportional

to Fij from the variational basis we generally observe a reduction in the quality of the signal

for these states. We therefore follow refs. [21, 22] and interpret these excess states as hybrid

mesons.

As discussed in detail in ref. [22], the hybrid states can be grouped into supermultiplets.

We find that the set [(0−+, 1−+, 2−+), 1−−], highlighted in red in figure 3, forms the lightest

charmonium hybrid supermultiplet, while the states highlighted in blue, (0++, 1++, 2++),

(0+−, 1+−, 1+−, 1+−, 2+−, 2+−, 3+−), form the first excited hybrid supermultiplet. These

patterns are consistent with a quark-antiquark pair coupled to a 1+− gluonic excitation;

the lightest hybrid supermutiplet has the quark-antiquark pair in S-wave and the first

excited hybrid supermultiplet has it in P -wave. The lightest hybrids appear ∼ 1.2–1.3GeV

above the lightest S-wave meson multiplet. This pattern of hybrids and their energy scale

– 7 –
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(2S) cη

(1S) cη
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c2

χ
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c1
χ

(1P) 
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χ

(1P) 
c0

χ
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2

ψ

(3915) X
?]++[2

(4140)
c1

χ

(4274)
c1

χ

(4430) cZ

(4020) X

(3900) cZ

(3860)
c0

χ

(4500)
c0

χ

(4700)
c0

χ

(4200) cZ(4230)ψ

(4390)ψ

(3842) 
3

ψ

0π

π π

η

0π

π π
η

π π
KK

π π

π π

ω, π π

0π
π

π

π

ω

φ

Thresholds:

DD 

*DD 
sD sD

*D *D
sD *sD

*sD *sD

2900

3100

3300

3500

3700

3900

4100

4300

4500
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Mass (MeV)

The level scheme of meson states containing a minimal quark content of cc. The name of
a state is determined by its quantum numbers IGJPC (see the review “Naming Scheme
for Hadrons”). States with unestablished quantum numbers are called X and are drawn
according to our best estimate of their likely JPC . States included in the Summary
Tables are shown with solid lines; selected states not in the Summary Tables, but with
assigned quantum numbers, are shown with dotted lines. The arrows indicate the most
dominant hadronic transitions. Single photon transitions, including ψ(nS) → γηc(mS),
ψ(nS) → γχcJ(1P ), and χcJ (1P ) → γJ/ψ, are omitted for clarity. For orientation, the
location of the thresholds related to a pair of ground state open charm mesons is indicated
in the figure.

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is

V#c !c$
0 #r$ % ! 4

3

!s
r
" br" 32"!s

9m2
c

~#$#r$ ~Sc & ~S !c; (1)

where ~#$#r$ % #$=
!!!!
"
p $3e!$2r2

. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly

Vspin-dep %
1

m2
c

"#
2!s
r3 !

b
2r

$
~L & ~S" 4!s

r3 T
%
: (2)

The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are

h3LJjTj3LJi %

8>>><
>>>:

! L
6#2L"3$ ; J % L" 1

" 1
6 ; J % L

! #L"1$
6#2L!1$ ; J % L! 1
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where

T. BARNES, S. GODFREY, AND E. S. SWANSON PHYSICAL REVIEW D 72, 054026 (2005)

054026-2
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which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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The spin-spin contact hyperfine interaction is one of the
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(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
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states, which are
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
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1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine) tensor (hyperfine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.
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Use the resulting wavefunctions
to calculate radiative transitions.
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This is the result of Ref. [56], except for our inclusion of
the relativistic phase space factor of E"c !c#

f =M"c !c#
i , which is

usually not far from unity. (The GI results do not include
this phase space factor.) We evaluate these radiative partial
widths in both the NR and GI models. For the NR model
the matrix elements hn02S0$1L0J0 jrjn2S$1LJi were evaluated
using the Coulomb plus linear plus smeared hyperfine
wave functions of the potential model described in
Sec. II A, and for the GI model they were evaluated using
the wave functions of Ref. [51]. Since the masses predicted
for unknown states differ in the two models, the assumed
photon energy E! differs as well; these photon energies are
given in the E1 and M1 transition tables (Tables II–IX)
together with the radiative partial widths.

Some E1 transitions that are of special importance for
the study of higher charmonium states are discussed in the
text. Transitions from initial 1%% c !c states are of greatest
interest in this regard, since these can be studied with high

statistics at e$e% machines. These can provide access to
the spin-triplet members of the 2P and 3P multiplets, in
particular, starting from the  "4040# and  "4415#. E1
radiative transitions may also be useful in identifying the
narrow 1D 3% and 2% c !c states, since they are all predicted
to have large partial widths (ca. 300 keV) to the 1P "J and
hc states.

B. M1 transitions

Although M1 rates are typically rather weaker than E1
rates, they are nonetheless interesting because they may
allow access to spin-singlet states that are very difficult to
produce otherwise. It is also interesting that the known M1
rates show serious disagreement between theory and ex-
periment. This is in part due to the fact that M1 transitions
between different spatial multiplets, such as  0 ! !#c
(2S! 1S), are nonzero only due to small relativistic
corrections to a vanishing lowest-order M1 matrix
element.

The M1 radiative partial widths are evaluated using
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TABLE III. 1P and 2P E1 radiative transitions (format as in Table II).

Multiplets Initial meson Final meson E! (MeV) "thy (keV) "expt (keV)
NR GI NR GI

1P! 1S "2"13P2# J= "13S1# 429 429 424 313 426& 51
"1"13P1# 390 389 314 239 291& 48
"0"13P0# 303 303 152 114 119& 19
hc"11P1# #c"11S0# 504 496 498 352

2P! 2S "2"23P2#  0"23S1# 276 282 304 207
"1"23P1# 232 258 183 183
"0"23P0# 162 223 64 135
hc"21P1# #0c"21S0# 285 305 280 218

2P! 1S "2"23P2# J= "13S1# 779 784 81 53
"1"23P1# 741 763 71 14
"0"23P0# 681 733 56 1.3
hc"21P1# #c"11S0# 839 856 140 85

2P! 1D "2"23P2#  3"13D3# 163 128 88 29
 2"13D2# 168 139 17 5.6
 "13D1# 197 204 1.9 1.0

"1"23P1#  2"13D2# 123 113 35 18
 "13D1# 152 179 22 21

"0"23P0#  "13D1# 81 143 13 51
hc"21P1# #2c"11D2# 133 117 60 27
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particular, starting from the  "4040# and  "4415#. E1
radiative transitions may also be useful in identifying the
narrow 1D 3% and 2% c !c states, since they are all predicted
to have large partial widths (ca. 300 keV) to the 1P "J and
hc states.
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Although M1 rates are typically rather weaker than E1
rates, they are nonetheless interesting because they may
allow access to spin-singlet states that are very difficult to
produce otherwise. It is also interesting that the known M1
rates show serious disagreement between theory and ex-
periment. This is in part due to the fact that M1 transitions
between different spatial multiplets, such as  0 ! !#c
(2S! 1S), are nonzero only due to small relativistic
corrections to a vanishing lowest-order M1 matrix
element.

The M1 radiative partial widths are evaluated using
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TABLE III. 1P and 2P E1 radiative transitions (format as in Table II).

Multiplets Initial meson Final meson E! (MeV) "thy (keV) "expt (keV)
NR GI NR GI

1P! 1S "2"13P2# J= "13S1# 429 429 424 313 426& 51
"1"13P1# 390 389 314 239 291& 48
"0"13P0# 303 303 152 114 119& 19
hc"11P1# #c"11S0# 504 496 498 352

2P! 2S "2"23P2#  0"23S1# 276 282 304 207
"1"23P1# 232 258 183 183
"0"23P0# 162 223 64 135
hc"21P1# #0c"21S0# 285 305 280 218

2P! 1S "2"23P2# J= "13S1# 779 784 81 53
"1"23P1# 741 763 71 14
"0"23P0# 681 733 56 1.3
hc"21P1# #c"11S0# 839 856 140 85

2P! 1D "2"23P2#  3"13D3# 163 128 88 29
 2"13D2# 168 139 17 5.6
 "13D1# 197 204 1.9 1.0

"1"23P1#  2"13D2# 123 113 35 18
 "13D1# 152 179 22 21

"0"23P0#  "13D1# 81 143 13 51
hc"21P1# #2c"11D2# 133 117 60 27
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0:1425 GeV2 in the NR model. Identification of any L ! 3
or L ! 4 c !c state would be very useful as a constraint on
the spectrum of higher-L c !c states generally. This is un-
fortunately a difficult problem, since these states are not
easily accessible experimentally. As we shall see, one
possibility is to produce the 3F2 !2 c !c state, which is
formed in E1 radiative transitions from the  "4159#, and
decays dominantly to DD and DD$. (For simplicity in this
paper we abbreviate the final state D !D as ‘‘DD,’’ the state
D !D$ % !DD$ as ‘‘DD$,’’ and so forth.)

III. RADIATIVE TRANSITIONS

A. E1 transitions

Radiative transitions of higher-mass charmonium states
are of interest largely because they provide one of the few
pathways between c !c states with different quantum num-
bers. Since typical E1 radiative partial widths of charmonia
are 10s to 100s of keV, corresponding to significant branch-
ing fractions of &10'3 to 10'2, large event samples of

radially excited S-wave states produced in e%e' annihila-
tion could be used to identify radially excited P-wave
states, which are not otherwise easily produced.
Similarly, the E1 radiative transition of the nominally
23D1  "4159# can be used to produce an F-wave c !c state;
this multiplet would likely be very difficult to reach using
other mechanisms.

We evaluate these E1 radiative partial widths using

"E1"n2S%1LJ ! n02S0%1L0J0 % "# !
4

3
Cfi#SS0e2

c$jh fjrj iij2

( E3
"

E"c !c#
f

M"c !c#
i

; (6)

where ec ! 2=3 is the c-quark charge in units of jej, $ is
the fine-structure constant, E" is the final photon energy,
E"c !c#

f is the total energy of the final c !c state, M"c !c#
i is the

mass of the initial c !c state, the spatial matrix element
h fjrj ii involves the initial and final radial wave func-
tions, and the angular matrix element Cfi is

TABLE II. S! P E1 radiative transitions in the NR and GI potential models. The masses are
taken from Table I; we use the experimental masses (rounded ‘‘input’’ column) if known, and for
the 1P1 hc we assume a mass of 3525 MeV, which is the c.o.g. of the 3PJ !J states. Otherwise,
theoretical values are used.

Multiplets Initial meson Final meson E" (MeV) "thy (keV) "expt (keV)
NR GI NR GI

2S! 1P  0"23S1# !2"13P2# 128 128 38 24 27) 4
!1"13P1# 171 171 54 29 27) 3
!0"13P0# 261 261 63 26 27) 3

%0c"21S0# hc"11P1# 111 119 49 36

3S! 2P  "33S1# !2"23P2# 67 119 14 48
!1"23P1# 113 145 39 43
!0"23P0# 184 180 54 22

%c"31S0# hc"21P1# 108 108 105 64

3S! 1P  "33S1# !2"13P2# 455 508 0.70 12.7
!1"13P1# 494 547 0.53 0.85
!0"13P0# 577 628 0.27 0.63

%c"31S0# hc"11P1# 485 511 9.1 28

4S! 3P  "43S1# !2"33P2# 97 112 68 66
!1"33P1# 142 131 126 54
!0"33P0# 208 155 0.003 25

%c"41S0# hc"31P1# 104 106 159 101

4S! 2P  "43S1# !2"23P2# 421 446 0.62 15
!1"23P1# 423 469 0.49 0.92
!0"23P0# 527 502 0.24 0.39

%c"41S0# hc"21P1# 427 444 10.1 31.3

4S! 1P  "43S1# !2"3P2# 775 804 0.61 5.2
!1"3P1# 811 841 0.41 0.53
!0"3P0# 887 915 0.18 0.13

%c"41S0# hc"1P1# 782 808 5.2 9.6
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similar way as the inclusive photon background distribution
but using the exclusive event selection on the ψð3686ÞMC
event sample.
Shown in Fig. 6 is the simultaneous fit of data for the

region 0.08 < Eγ < 0.5 GeV for the inclusive photon
energy distribution and the region 0.08 < Eγ < 0.35 GeV

for the exclusive photon energy distribution. The fit to the
inclusive photon energy distribution and the corresponding
pull distribution are shown in the top set of plots. The bottom
set of plots are those for the exclusive photon energy
distribution. The pull distributions are reasonable, except
in the vicinity of the ψð3686Þ → γχc1 and γχc2 peaks. The
chi squares per degree of freedom (ndf) are 3.5 and 2.7 for
the inclusive and exclusive distribution fits, respectively.
The chi square is determined using χ2 ¼ Σiððni − nfi Þ=σiÞ2,
whereni,n

f
i , and σi are the number of data events in bin i, the

result of the fit at bin i, and the statistical uncertainty of ni,
respectively, and the sum is over all histogram bins.
A fit is also done to the MC inclusive energy distribution.

The MC shapes are used without convolved asymmetric
Gaussians for the ψð3686Þ → γχcJ peaks. Since only MC
shapes are used, it is not useful to do a simultaneous fit as there
are no common parameters to be determined in such a fit. The
fit matches the inclusive photon energy distribution almost
perfectlywith a chi square close to zero.This is not unexpected
since the signal and background shapes come from the MC
and when combined reconstruct the MC distribution.

VII. BRANCHING FRACTION DETERMINATIONS

The branching fractions are calculated using the follow-
ing equations:

Bðψð3686Þ → γχcJÞ ¼
Nψð3686Þ→γχcJ

ϵψð3686Þ→γχcJ × Nψð3686Þ
; ð1Þ

where Bðψð3686Þ → γχcJÞ is the branching fraction of
ψð3686Þ → γχcJ, Nψð3686Þ→γχcJ is the number of events in
data from the fit, ϵψð3686Þ→γχcJ is the efficiency determined
from MC, and Nψð3686Þ is the number of ψð3686Þ events
[17]. The product branching fraction for ψð3686Þ →
γχcJ; χcJ → γJ=ψ is given by

Bðψð3686Þ → γχcJÞ × BðχcJ → γJ=ψÞ

¼
NχcJ→γJ=ψ

ϵχcJ→γJ=ψ × Nψð3686Þ
; ð2Þ
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FIG. 6. Simultaneous fits to the photon energy distributions of
data. (Top set) Inclusive distribution fit and corresponding pulls,
and (bottom set) exclusive distribution fit and pull distribution.
Peaks from left to right in the top set are ψð3686Þ → γχc2, γχc1,
and γχc0 and χc1 and χc2 → γJ=ψ . The χc0 → γJ=ψ peak is not
visible. The smooth curves in the two plots are the fit results. The
dashed-dotted and dashed curves in the top plot are the back-
ground distribution from the inclusive ψð3686Þ MC with radi-
ative photons removed and the total background, respectively.
The background in the exclusive fit plot is not visible.

TABLE II. Branching fraction results. The indicated uncertainties are statistical only.

Branching Fraction Events (×106) Efficiency Branching Fraction (%)

Bðψð3686Þ → γχc0Þ 4.6871$ 0.0068 0.4692 9.389$ 0.014
Bðψð3686Þ → γχc1Þ 4.9957$ 0.0054 0.4740 9.905$ 0.011
Bðψð3686Þ → γχc2Þ 4.2021$ 0.0055 0.4104 9.621$ 0.013

Bðψð3686Þ → γχc0Þ × Bðχc0 → γJ=ψÞ 0.0123$ 0.0081 0.4920 0.024$ 0.015
Bðψð3686Þ → γχc1Þ × Bðχc1 → γJ=ψÞ 1.8881$ 0.0053 0.5155 3.442$ 0.010
Bðψð3686Þ → γχc2Þ × Bðχc2 → γJ=ψÞ 0.9828$ 0.0041 0.5150 1.793$ 0.008

Bðχc0 → γJ=ψÞ 0.25$ 0.16
Bðχc1 → γJ=ψÞ 34.75$ 0.11
Bðχc2 → γJ=ψÞ 18.64$ 0.08
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Radiative transitions can be studied at BESIII using .e+e− → ψ(2S)

(inclusive)

(exclusive)

ηc(11S0)

J/ψ(13S1)

ψ′(23S1)

ψ′′(13D1)

hc(11P1)

χc0(13P0)

χc1(13P1)
χc2(13P2)

ηc′(21S0)

3.0

3.2

3.4

3.6

3.8
2MDM

AS
S 

  [
G

eV
/c

2 ]

0−+ 1−− 1+− 0++ 1++ 2++

JPC

ψ(33S1)

ψ(43S1)

ψ(23D1)

χc2(23P2)

4.4

4.2

4.0 ηc(31S0)

ηc(41S0)

hc(21P1)

χc0(23P0)

χc1(23P1)

χc2(33P2)
hc(31P1)

χc0(33P0)

χc1(33P1)Y(4260)

Y(4360)

X(3872)

predicted, discovered

predicted, undiscovered

unpredicted, discovered

Z(4430)

Z(3900)

Z(4020)



IIIB.  Radiative Transitions

12

Branching fraction measurements of ψð3686Þ → γχ cJ

M. Ablikim,1 M. N. Achasov,9,e S. Ahmed,14 M. Albrecht,4 A. Amoroso,50a,50c F. F. An,1 Q. An,47,a J. Z. Bai,1 O. Bakina,24

R. Baldini Ferroli,20a Y. Ban,32 D.W. Bennett,19 J. V. Bennett,5 N. Berger,23 M. Bertani,20a D. Bettoni,21a J. M. Bian,45

F. Bianchi,50a,50c E. Boger,24,c I. Boyko,24 R. A. Briere,5 H. Cai,52 X. Cai,1,a O. Cakir,42a A. Calcaterra,20a G. F. Cao,1

S. A. Cetin,42b J. Chai,50c J. F. Chang,1,a G. Chelkov,24,c,d G. Chen,1 H. S. Chen,1 J. C. Chen,1 M. L. Chen,1,a S. J. Chen,30

X. R. Chen,27 Y. B. Chen,1,a X. K. Chu,32 G. Cibinetto,21a H. L. Dai,1,a J. P. Dai,35,j A. Dbeyssi,14 D. Dedovich,24

Z. Y. Deng,1 A. Denig,23 I. Denysenko,24 M. Destefanis,50a,50c F. De Mori,50a,50c Y. Ding,28 C. Dong,31 J. Dong,1,a

L. Y. Dong,1 M. Y. Dong,1,a O. Dorjkhaidav,22 Z. L. Dou,30 S. X. Du,54 P. F. Duan,1 J. Fang,1,a S. S. Fang,1 X. Fang,47,a

Y. Fang,1 R. Farinelli,21a,21b L. Fava,50a,50c S. Fegan,23 F. Feldbauer,23 G. Felici,20a C. Q. Feng,47,a E. Fioravanti,21a

M. Fritsch,14,23 C. D. Fu,1 Q. Gao,1 X. L. Gao,47,a Y. Gao,41 Y. G. Gao,6 Z. Gao,47,a I. Garzia,21a K. Goetzen,10 L. Gong,31

W. X. Gong,1,a W. Gradl,23 M. Greco,50a,50c M. H. Gu,1,a S. Gu,15 Y. T. Gu,12 A. Q. Guo,1 L. B. Guo,29 R. P. Guo,1

Y. P. Guo,23 Z. Haddadi,26 S. Han,52 X. Q. Hao,15 F. A. Harris,44 K. L. He,1 X. Q. He,46 F. H. Heinsius,4 T. Held,4

Y. K. Heng,1,a T. Holtmann,4 Z. L. Hou,1 C. Hu,29 H. M. Hu,1 T. Hu,1,a Y. Hu,1 G. S. Huang,47,a J. S. Huang,15

X. T. Huang,34 X. Z. Huang,30 Z. L. Huang,28 T. Hussain,49 W. Ikegami Andersson,51 Q. Ji,1 Q. P. Ji,15 X. B. Ji,1 X. L. Ji,1,a

X. S. Jiang,1,a X. Y. Jiang,31 J. B. Jiao,34 Z. Jiao,17 D. P. Jin,1,a S. Jin,1 T. Johansson,51 A. Julin,45 N. Kalantar-Nayestanaki,26

X. L. Kang,1 X. S. Kang,31 M. Kavatsyuk,26 B. C. Ke,5 T. Khan,47,a P. Kiese,23 R. Kliemt,10 L. Koch,25 O. B. Kolcu,42b,h

B. Kopf,4 M. Kornicer,44 M. Kuemmel,4 M. Kuhlmann,4 A. Kupsc,51 W. Kühn,25 J. S. Lange,25 M. Lara,19 P. Larin,14

L. Lavezzi,50c,1 H. Leithoff,23 C. Leng,50c C. Li,51 Cheng Li,47,a D. M. Li,54 F. Li,1,a F. Y. Li,32 G. Li,1 H. B. Li,1 H. J. Li,1

J. C. Li,1 Jin Li,33 K. Li,13 K. Li,34 Lei Li,3 P. L. Li,47,a P. R. Li,7,43 Q. Y. Li,34 T. Li,34 W. D. Li,1 W. G. Li,1 X. L. Li,34

X. N. Li,1,a X. Q. Li,31 Z. B. Li,40 H. Liang,47,a Y. F. Liang,37 Y. T. Liang,25 G. R. Liao,11 D. X. Lin,14 B. Liu,35,j B. J. Liu,1

C. X. Liu,1 D. Liu,47,a F. H. Liu,36 Fang Liu,1 Feng Liu,6 H. B. Liu,12 H. H. Liu,16 H. H. Liu,1 H. M. Liu,1 J. B. Liu,47,a

J. P. Liu,52 J. Y. Liu,1 K. Liu,41 K. Y. Liu,28 Ke Liu,6 L. D. Liu,32 P. L. Liu,1,a Q. Liu,43 S. B. Liu,47,a X. Liu,27 Y. B. Liu,31

Y. Y. Liu,31 Z. A. Liu,1,a Zhiqing Liu,23 Y. F. Long,32 X. C. Lou,1,a,g H. J. Lu,17 J. G. Lu,1,a Y. Lu,1 Y. P. Lu,1,a C. L. Luo,29

M. X. Luo,53 T. Luo,44 X. L. Luo,1,a X. R. Lyu,43 F. C. Ma,28 H. L. Ma,1 L. L. Ma,34 M.M. Ma,1 Q. M. Ma,1 T. Ma,1

X. N. Ma,31 X. Y. Ma,1,a Y. M. Ma,34 F. E. Maas,14 M. Maggiora,50a,50c Q. A. Malik,49 Y. J. Mao,32 Z. P. Mao,1

S. Marcello,50a,50c J. G. Messchendorp,26 G. Mezzadri,21b J. Min,1,a T. J. Min,1 R. E. Mitchell,19 X. H. Mo,1,a Y. J. Mo,6

C. Morales Morales,14 G. Morello,20a N. Yu. Muchnoi,9,e H. Muramatsu,45 P. Musiol,4 A. Mustafa,4 Y. Nefedov,24

F. Nerling,10 I. B. Nikolaev,9,e Z. Ning,1,a S. Nisar,8 S. L. Niu,1,a X. Y. Niu,1 S. L. Olsen,33 Q. Ouyang,1,a S. Pacetti,20b

Y. Pan,47,a P. Patteri,20a M. Pelizaeus,4 J. Pellegrino,50a,50c H. P. Peng,47,a K. Peters,10,i J. Pettersson,51 J. L. Ping,29

R. G. Ping,1 R. Poling,45 V. Prasad,39,47 H. R. Qi,2 M. Qi,30 S. Qian,1,a C. F. Qiao,43 J. J. Qin,43 N. Qin,52 X. S. Qin,1

Z. H. Qin,1,a J. F. Qiu,1 K. H. Rashid,49 C. F. Redmer,23 M. Richter,4 M. Ripka,23 G. Rong,1 Ch. Rosner,14 X. D. Ruan,12

A. Sarantsev,24,f M. Savrié,21b C. Schnier,4 K. Schoenning,51 W. Shan,32 M. Shao,47,a C. P. Shen,2 P. X. Shen,31 X. Y. Shen,1

H. Y. Sheng,1 J. J. Song,34 X. Y. Song,1 S. Sosio,50a,50c C. Sowa,4 S. Spataro,50a,50c G. X. Sun,1 J. F. Sun,15 S. S. Sun,1

X. H. Sun,1 Y. J. Sun,47,a Y. K. Sun,47,a Y. Z. Sun,1 Z. J. Sun,1,a Z. T. Sun,19 C. J. Tang,37 G. Y. Tang,1 X. Tang,1 I. Tapan,42c

M. Tiemens,26 B. T. Tsednee,22 I. Uman,42d G. S. Varner,44 B. Wang,1 B. L. Wang,43 D. Wang,32 D. Y. Wang,32 DanWang,43

K. Wang,1,a L. L. Wang,1 L. S. Wang,1 M. Wang,34 P. Wang,1 P. L. Wang,1 W. P. Wang,47,a X. F. Wang,41 Y. D. Wang,14

Y. F. Wang,1,a Y. Q. Wang,23 Z. Wang,1,a Z. G. Wang,1,a Z. H. Wang,47,a Z. Y. Wang,1 Z. Y. Wang,1 T. Weber,23 D. H. Wei,11

P. Weidenkaff,23 S. P. Wen,1 U. Wiedner,4 M. Wolke,51 L. H. Wu,1 L. J. Wu,1 Z. Wu,1,a L. Xia,47,a Y. Xia,18 D. Xiao,1

H. Xiao,48 Y. J. Xiao,1 Z. J. Xiao,29 Y. G. Xie,1,a Y. H. Xie,6 X. A. Xiong,1 Q. L. Xiu,1,a G. F. Xu,1 J. J. Xu,1 L. Xu,1

Q. J. Xu,13 Q. N. Xu,43 X. P. Xu,38 L. Yan,50a,50c W. B. Yan,47,a W. C. Yan,47,a Y. H. Yan,18 H. J. Yang,35,j H. X. Yang,1

L. Yang,52 Y. H. Yang,30 Y. X. Yang,11 M. Ye,1,a M. H. Ye,7 J. H. Yin,1 Z. Y. You,40 B. X. Yu,1,a C. X. Yu,31 J. S. Yu,27

C. Z. Yuan,1 Y. Yuan,1 A. Yuncu,42b,b A. A. Zafar,49 Y. Zeng,18 Z. Zeng,47,a B. X. Zhang,1 B. Y. Zhang,1,a C. C. Zhang,1

D. H. Zhang,1 H. H. Zhang,40 H. Y. Zhang,1,a J. Zhang,1 J. L. Zhang,1 J. Q. Zhang,1 J. W. Zhang,1,a J. Y. Zhang,1

J. Z. Zhang,1 K. Zhang,1 L. Zhang,41 S. Q. Zhang,31 X. Y. Zhang,34 Y. Zhang,1 Y. Zhang,1 Y. H. Zhang,1,a Y. T. Zhang,47,a

Yu Zhang,43 Z. H. Zhang,6 Z. P. Zhang,47 Z. Y. Zhang,52 G. Zhao,1 J. W. Zhao,1,a J. Y. Zhao,1 J. Z. Zhao,1,a Lei Zhao,47,a

Ling Zhao,1 M. G. Zhao,31 Q. Zhao,1 S. J. Zhao,54 T. C. Zhao,1 Y. B. Zhao,1,a Z. G. Zhao,47,a A. Zhemchugov,24,c

B. Zheng,14,48 J. P. Zheng,1,a W. J. Zheng,34 Y. H. Zheng,43 B. Zhong,29 L. Zhou,1,a X. Zhou,52 X. K. Zhou,47,a

X. R. Zhou,47,a X. Y. Zhou,1 Y. X. Zhou,12,a K. Zhu,1 K. J. Zhu,1,a S. Zhu,1 S. H. Zhu,46 X. L. Zhu,41 Y. C. Zhu,47,a

Y. S. Zhu,1 Z. A. Zhu,1 J. Zhuang,1,a L. Zotti,50a,50c B. S. Zou,1 and J. H. Zou1

(BESIII Collaboration)

PHYSICAL REVIEW D 96, 032001 (2017)

2470-0010=2017=96(3)=032001(14) 032001-1 © 2017 American Physical Society

Branching fraction measurements of ψð3686Þ → γχ cJ

M. Ablikim,1 M. N. Achasov,9,e S. Ahmed,14 M. Albrecht,4 A. Amoroso,50a,50c F. F. An,1 Q. An,47,a J. Z. Bai,1 O. Bakina,24

R. Baldini Ferroli,20a Y. Ban,32 D.W. Bennett,19 J. V. Bennett,5 N. Berger,23 M. Bertani,20a D. Bettoni,21a J. M. Bian,45

F. Bianchi,50a,50c E. Boger,24,c I. Boyko,24 R. A. Briere,5 H. Cai,52 X. Cai,1,a O. Cakir,42a A. Calcaterra,20a G. F. Cao,1

S. A. Cetin,42b J. Chai,50c J. F. Chang,1,a G. Chelkov,24,c,d G. Chen,1 H. S. Chen,1 J. C. Chen,1 M. L. Chen,1,a S. J. Chen,30

X. R. Chen,27 Y. B. Chen,1,a X. K. Chu,32 G. Cibinetto,21a H. L. Dai,1,a J. P. Dai,35,j A. Dbeyssi,14 D. Dedovich,24

Z. Y. Deng,1 A. Denig,23 I. Denysenko,24 M. Destefanis,50a,50c F. De Mori,50a,50c Y. Ding,28 C. Dong,31 J. Dong,1,a

L. Y. Dong,1 M. Y. Dong,1,a O. Dorjkhaidav,22 Z. L. Dou,30 S. X. Du,54 P. F. Duan,1 J. Fang,1,a S. S. Fang,1 X. Fang,47,a

Y. Fang,1 R. Farinelli,21a,21b L. Fava,50a,50c S. Fegan,23 F. Feldbauer,23 G. Felici,20a C. Q. Feng,47,a E. Fioravanti,21a

M. Fritsch,14,23 C. D. Fu,1 Q. Gao,1 X. L. Gao,47,a Y. Gao,41 Y. G. Gao,6 Z. Gao,47,a I. Garzia,21a K. Goetzen,10 L. Gong,31

W. X. Gong,1,a W. Gradl,23 M. Greco,50a,50c M. H. Gu,1,a S. Gu,15 Y. T. Gu,12 A. Q. Guo,1 L. B. Guo,29 R. P. Guo,1

Y. P. Guo,23 Z. Haddadi,26 S. Han,52 X. Q. Hao,15 F. A. Harris,44 K. L. He,1 X. Q. He,46 F. H. Heinsius,4 T. Held,4

Y. K. Heng,1,a T. Holtmann,4 Z. L. Hou,1 C. Hu,29 H. M. Hu,1 T. Hu,1,a Y. Hu,1 G. S. Huang,47,a J. S. Huang,15

X. T. Huang,34 X. Z. Huang,30 Z. L. Huang,28 T. Hussain,49 W. Ikegami Andersson,51 Q. Ji,1 Q. P. Ji,15 X. B. Ji,1 X. L. Ji,1,a

X. S. Jiang,1,a X. Y. Jiang,31 J. B. Jiao,34 Z. Jiao,17 D. P. Jin,1,a S. Jin,1 T. Johansson,51 A. Julin,45 N. Kalantar-Nayestanaki,26

X. L. Kang,1 X. S. Kang,31 M. Kavatsyuk,26 B. C. Ke,5 T. Khan,47,a P. Kiese,23 R. Kliemt,10 L. Koch,25 O. B. Kolcu,42b,h

B. Kopf,4 M. Kornicer,44 M. Kuemmel,4 M. Kuhlmann,4 A. Kupsc,51 W. Kühn,25 J. S. Lange,25 M. Lara,19 P. Larin,14

L. Lavezzi,50c,1 H. Leithoff,23 C. Leng,50c C. Li,51 Cheng Li,47,a D. M. Li,54 F. Li,1,a F. Y. Li,32 G. Li,1 H. B. Li,1 H. J. Li,1

J. C. Li,1 Jin Li,33 K. Li,13 K. Li,34 Lei Li,3 P. L. Li,47,a P. R. Li,7,43 Q. Y. Li,34 T. Li,34 W. D. Li,1 W. G. Li,1 X. L. Li,34

X. N. Li,1,a X. Q. Li,31 Z. B. Li,40 H. Liang,47,a Y. F. Liang,37 Y. T. Liang,25 G. R. Liao,11 D. X. Lin,14 B. Liu,35,j B. J. Liu,1

C. X. Liu,1 D. Liu,47,a F. H. Liu,36 Fang Liu,1 Feng Liu,6 H. B. Liu,12 H. H. Liu,16 H. H. Liu,1 H. M. Liu,1 J. B. Liu,47,a

J. P. Liu,52 J. Y. Liu,1 K. Liu,41 K. Y. Liu,28 Ke Liu,6 L. D. Liu,32 P. L. Liu,1,a Q. Liu,43 S. B. Liu,47,a X. Liu,27 Y. B. Liu,31

Y. Y. Liu,31 Z. A. Liu,1,a Zhiqing Liu,23 Y. F. Long,32 X. C. Lou,1,a,g H. J. Lu,17 J. G. Lu,1,a Y. Lu,1 Y. P. Lu,1,a C. L. Luo,29

M. X. Luo,53 T. Luo,44 X. L. Luo,1,a X. R. Lyu,43 F. C. Ma,28 H. L. Ma,1 L. L. Ma,34 M.M. Ma,1 Q. M. Ma,1 T. Ma,1

X. N. Ma,31 X. Y. Ma,1,a Y. M. Ma,34 F. E. Maas,14 M. Maggiora,50a,50c Q. A. Malik,49 Y. J. Mao,32 Z. P. Mao,1

S. Marcello,50a,50c J. G. Messchendorp,26 G. Mezzadri,21b J. Min,1,a T. J. Min,1 R. E. Mitchell,19 X. H. Mo,1,a Y. J. Mo,6

C. Morales Morales,14 G. Morello,20a N. Yu. Muchnoi,9,e H. Muramatsu,45 P. Musiol,4 A. Mustafa,4 Y. Nefedov,24

F. Nerling,10 I. B. Nikolaev,9,e Z. Ning,1,a S. Nisar,8 S. L. Niu,1,a X. Y. Niu,1 S. L. Olsen,33 Q. Ouyang,1,a S. Pacetti,20b

Y. Pan,47,a P. Patteri,20a M. Pelizaeus,4 J. Pellegrino,50a,50c H. P. Peng,47,a K. Peters,10,i J. Pettersson,51 J. L. Ping,29

R. G. Ping,1 R. Poling,45 V. Prasad,39,47 H. R. Qi,2 M. Qi,30 S. Qian,1,a C. F. Qiao,43 J. J. Qin,43 N. Qin,52 X. S. Qin,1

Z. H. Qin,1,a J. F. Qiu,1 K. H. Rashid,49 C. F. Redmer,23 M. Richter,4 M. Ripka,23 G. Rong,1 Ch. Rosner,14 X. D. Ruan,12

A. Sarantsev,24,f M. Savrié,21b C. Schnier,4 K. Schoenning,51 W. Shan,32 M. Shao,47,a C. P. Shen,2 P. X. Shen,31 X. Y. Shen,1

H. Y. Sheng,1 J. J. Song,34 X. Y. Song,1 S. Sosio,50a,50c C. Sowa,4 S. Spataro,50a,50c G. X. Sun,1 J. F. Sun,15 S. S. Sun,1

X. H. Sun,1 Y. J. Sun,47,a Y. K. Sun,47,a Y. Z. Sun,1 Z. J. Sun,1,a Z. T. Sun,19 C. J. Tang,37 G. Y. Tang,1 X. Tang,1 I. Tapan,42c

M. Tiemens,26 B. T. Tsednee,22 I. Uman,42d G. S. Varner,44 B. Wang,1 B. L. Wang,43 D. Wang,32 D. Y. Wang,32 DanWang,43

K. Wang,1,a L. L. Wang,1 L. S. Wang,1 M. Wang,34 P. Wang,1 P. L. Wang,1 W. P. Wang,47,a X. F. Wang,41 Y. D. Wang,14

Y. F. Wang,1,a Y. Q. Wang,23 Z. Wang,1,a Z. G. Wang,1,a Z. H. Wang,47,a Z. Y. Wang,1 Z. Y. Wang,1 T. Weber,23 D. H. Wei,11

P. Weidenkaff,23 S. P. Wen,1 U. Wiedner,4 M. Wolke,51 L. H. Wu,1 L. J. Wu,1 Z. Wu,1,a L. Xia,47,a Y. Xia,18 D. Xiao,1

H. Xiao,48 Y. J. Xiao,1 Z. J. Xiao,29 Y. G. Xie,1,a Y. H. Xie,6 X. A. Xiong,1 Q. L. Xiu,1,a G. F. Xu,1 J. J. Xu,1 L. Xu,1

Q. J. Xu,13 Q. N. Xu,43 X. P. Xu,38 L. Yan,50a,50c W. B. Yan,47,a W. C. Yan,47,a Y. H. Yan,18 H. J. Yang,35,j H. X. Yang,1

L. Yang,52 Y. H. Yang,30 Y. X. Yang,11 M. Ye,1,a M. H. Ye,7 J. H. Yin,1 Z. Y. You,40 B. X. Yu,1,a C. X. Yu,31 J. S. Yu,27

C. Z. Yuan,1 Y. Yuan,1 A. Yuncu,42b,b A. A. Zafar,49 Y. Zeng,18 Z. Zeng,47,a B. X. Zhang,1 B. Y. Zhang,1,a C. C. Zhang,1

D. H. Zhang,1 H. H. Zhang,40 H. Y. Zhang,1,a J. Zhang,1 J. L. Zhang,1 J. Q. Zhang,1 J. W. Zhang,1,a J. Y. Zhang,1

J. Z. Zhang,1 K. Zhang,1 L. Zhang,41 S. Q. Zhang,31 X. Y. Zhang,34 Y. Zhang,1 Y. Zhang,1 Y. H. Zhang,1,a Y. T. Zhang,47,a

Yu Zhang,43 Z. H. Zhang,6 Z. P. Zhang,47 Z. Y. Zhang,52 G. Zhao,1 J. W. Zhao,1,a J. Y. Zhao,1 J. Z. Zhao,1,a Lei Zhao,47,a

Ling Zhao,1 M. G. Zhao,31 Q. Zhao,1 S. J. Zhao,54 T. C. Zhao,1 Y. B. Zhao,1,a Z. G. Zhao,47,a A. Zhemchugov,24,c

B. Zheng,14,48 J. P. Zheng,1,a W. J. Zheng,34 Y. H. Zheng,43 B. Zhong,29 L. Zhou,1,a X. Zhou,52 X. K. Zhou,47,a

X. R. Zhou,47,a X. Y. Zhou,1 Y. X. Zhou,12,a K. Zhu,1 K. J. Zhu,1,a S. Zhu,1 S. H. Zhu,46 X. L. Zhu,41 Y. C. Zhu,47,a

Y. S. Zhu,1 Z. A. Zhu,1 J. Zhuang,1,a L. Zotti,50a,50c B. S. Zou,1 and J. H. Zou1

(BESIII Collaboration)

PHYSICAL REVIEW D 96, 032001 (2017)

2470-0010=2017=96(3)=032001(14) 032001-1 © 2017 American Physical Society

similar way as the inclusive photon background distribution
but using the exclusive event selection on the ψð3686ÞMC
event sample.
Shown in Fig. 6 is the simultaneous fit of data for the

region 0.08 < Eγ < 0.5 GeV for the inclusive photon
energy distribution and the region 0.08 < Eγ < 0.35 GeV

for the exclusive photon energy distribution. The fit to the
inclusive photon energy distribution and the corresponding
pull distribution are shown in the top set of plots. The bottom
set of plots are those for the exclusive photon energy
distribution. The pull distributions are reasonable, except
in the vicinity of the ψð3686Þ → γχc1 and γχc2 peaks. The
chi squares per degree of freedom (ndf) are 3.5 and 2.7 for
the inclusive and exclusive distribution fits, respectively.
The chi square is determined using χ2 ¼ Σiððni − nfi Þ=σiÞ2,
whereni,n

f
i , and σi are the number of data events in bin i, the

result of the fit at bin i, and the statistical uncertainty of ni,
respectively, and the sum is over all histogram bins.
A fit is also done to the MC inclusive energy distribution.

The MC shapes are used without convolved asymmetric
Gaussians for the ψð3686Þ → γχcJ peaks. Since only MC
shapes are used, it is not useful to do a simultaneous fit as there
are no common parameters to be determined in such a fit. The
fit matches the inclusive photon energy distribution almost
perfectlywith a chi square close to zero.This is not unexpected
since the signal and background shapes come from the MC
and when combined reconstruct the MC distribution.

VII. BRANCHING FRACTION DETERMINATIONS

The branching fractions are calculated using the follow-
ing equations:

Bðψð3686Þ → γχcJÞ ¼
Nψð3686Þ→γχcJ

ϵψð3686Þ→γχcJ × Nψð3686Þ
; ð1Þ

where Bðψð3686Þ → γχcJÞ is the branching fraction of
ψð3686Þ → γχcJ, Nψð3686Þ→γχcJ is the number of events in
data from the fit, ϵψð3686Þ→γχcJ is the efficiency determined
from MC, and Nψð3686Þ is the number of ψð3686Þ events
[17]. The product branching fraction for ψð3686Þ →
γχcJ; χcJ → γJ=ψ is given by

Bðψð3686Þ → γχcJÞ × BðχcJ → γJ=ψÞ

¼
NχcJ→γJ=ψ

ϵχcJ→γJ=ψ × Nψð3686Þ
; ð2Þ
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FIG. 6. Simultaneous fits to the photon energy distributions of
data. (Top set) Inclusive distribution fit and corresponding pulls,
and (bottom set) exclusive distribution fit and pull distribution.
Peaks from left to right in the top set are ψð3686Þ → γχc2, γχc1,
and γχc0 and χc1 and χc2 → γJ=ψ . The χc0 → γJ=ψ peak is not
visible. The smooth curves in the two plots are the fit results. The
dashed-dotted and dashed curves in the top plot are the back-
ground distribution from the inclusive ψð3686Þ MC with radi-
ative photons removed and the total background, respectively.
The background in the exclusive fit plot is not visible.

TABLE II. Branching fraction results. The indicated uncertainties are statistical only.

Branching Fraction Events (×106) Efficiency Branching Fraction (%)

Bðψð3686Þ → γχc0Þ 4.6871$ 0.0068 0.4692 9.389$ 0.014
Bðψð3686Þ → γχc1Þ 4.9957$ 0.0054 0.4740 9.905$ 0.011
Bðψð3686Þ → γχc2Þ 4.2021$ 0.0055 0.4104 9.621$ 0.013

Bðψð3686Þ → γχc0Þ × Bðχc0 → γJ=ψÞ 0.0123$ 0.0081 0.4920 0.024$ 0.015
Bðψð3686Þ → γχc1Þ × Bðχc1 → γJ=ψÞ 1.8881$ 0.0053 0.5155 3.442$ 0.010
Bðψð3686Þ → γχc2Þ × Bðχc2 → γJ=ψÞ 0.9828$ 0.0041 0.5150 1.793$ 0.008

Bðχc0 → γJ=ψÞ 0.25$ 0.16
Bðχc1 → γJ=ψÞ 34.75$ 0.11
Bðχc2 → γJ=ψÞ 18.64$ 0.08
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Radiative transitions can be studied at BESIII using .e+e− → ψ(2S)

(inclusive)

(exclusive)

ηc(11S0)

J/ψ(13S1)
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Z(4430)

Z(3900)

Z(4020)

and the world average full widths [7]. Table V contains our
partial width results, as well as theoretical predictions,
reproduced from Table VI in Ref. [8]. The theoretical
predictions include the linear potential (LP) and screened
potential (SP) models [8], as well as earlier predictions
from a relativistic quark model (RQM) [33], nonrelativistic
potential and Godfrey-Isgur relativized potential models
(NR/GI) [34], and color screened models, calculated with
zeroth order wave functions (SNR0) and first order rela-
tivistically corrected wave functions (SNR1) [35].

X. SUMMARY

Our results, CLEO measurements [9,31,32], previous
BESIII measurements [15,16], and PDG results [7] are
listed in Table IV. Our ψð3686Þ → γχcJ branching fractions
are the most precise. The branching fractions for
ψð3686Þ → γχcJ agree with CLEO within one standard
deviation, except for ψð3686Þ → γχc1 which differs by 1.3
standard deviations. The product branching fractions

Bðψð3686Þ → γχc1Þ × Bðχc1 → γJ=ψÞ and Bðψð3686Þ →
γχc2Þ × Bðχc2 → γJ=ψÞ agree with the previous BESIII
measurements. Because of the difficulty in fitting
ψð3686Þ → γχc0; χc0 → γJ=ψ , our product branching frac-
tion has a very large systematic error compared with those
using exclusive decays.
Partial widths are shown in Table V. For comparison with

models, experimental results have become accurate enough
(partly due to this measurement) to become sensitive to fine
details of the potentials, e.g. relativistic effects, screening
effects, and higher partial waves.
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TABLE IV. Our branching fraction results, other results, and PDG compilation results.

PDG [7] (%) PDG [7] (%)
Branching Fraction This analysis (%) Other (%) Average Fit

Bðψð3686Þ → γχc0Þ 9.389# 0.014# 0.332 9.22# 0.11# 0.46 [9] 9.2# 0.4 9.99# 0.27
Bðψð3686Þ → γχc1Þ 9.905# 0.011# 0.353 9.07# 0.11# 0.54 [9] 8.9# 0.5 9.55# 0.31
Bðψð3686Þ → γχc2Þ 9.621# 0.013# 0.272 9.33# 0.14# 0.61 [9] 8.8# 0.5 9.11# 0.31

Bðψð3686Þ → γχc0Þ × Bðχc0 → γJ=ψÞ 0.024# 0.015# 0.205 0.125# 0.007# 0.013 [31] 0.131# 0.035 0.127# 0.006
0.151# 0.003# 0.010 [15]
0.158# 0.003# 0.006 [16]

Bðψð3686Þ → γχc1Þ × Bðχc1 → γJ=ψÞ 3.442# 0.010# 0.132 3.56# 0.03# 0.12 [31] 2.93# 0.15 3.24# 0.07
3.377# 0.009# 0.183 [15]
3.518# 0.01# 0.120 [16]

Bðψð3686Þ → γχc2Þ × Bðχc2 → γJ=ψÞ 1.793# 0.008# 0.163 1.95# 0.02# 0.07 [31] 1.52# 0.15 1.75# 0.04
1.874# 0.007# 0.102 [15]
1.996# 0.008# 0.070 [16]

Bðχc0 → γJ=ψÞ 0.25# 0.16# 2.15 2# 0.2# 0.2 [32] 1.27# 0.06
Bðχc1 → γJ=ψÞ 34.75# 0.11# 1.70 37.9# 0.8# 2.1 [32] 33.9# 1.2
Bðχc2 → γJ=ψÞ 18.64# 0.08# 1.69 19.9# 0.5# 1.2 [32] 19.2# 0.7

TABLE V. Partial widths (keV) of radiative transitions for ψð3686Þ → γJ=ψ and χcJ → γJ=ψ . Shown are our experimental results and
predictions from RQM [33]; NR/GI [34]; SNR0 and SNR1 [35], calculated with zeroth order wave functions (SNR0) and first order
relativistically corrected wave functions (SNR1); and LP and SP models [8]. The ΓE1 predictions include only E1 transition calculations,
while the ΓEM results include higher order multipole corrections.

ΓE1 (keV) ΓEM (keV)

Initial State Final State RQM [33] NR/GI [34] SNR0=1 [35] LP [8] SP [8] LP [8] SP [8] This Analysis

ψð3686Þ χc0 26.3 63/26 74/25 27 26 22 22 26.9# 1.8
χc1 22.9 54/29 62/36 45 48 42 45 28.3# 1.9
χc2 18.2 38/24 43/34 36 44 38 46 27.5# 1.7

χc0 J=ψ 121 152/114 167/117 141 146 172 179
χc1 265 314/239 354/244 269 278 306 319 306# 23
χc2 327 424/313 473/309 327 338 284 292 363# 41
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similar way as the inclusive photon background distribution
but using the exclusive event selection on the ψð3686ÞMC
event sample.
Shown in Fig. 6 is the simultaneous fit of data for the

region 0.08 < Eγ < 0.5 GeV for the inclusive photon
energy distribution and the region 0.08 < Eγ < 0.35 GeV

for the exclusive photon energy distribution. The fit to the
inclusive photon energy distribution and the corresponding
pull distribution are shown in the top set of plots. The bottom
set of plots are those for the exclusive photon energy
distribution. The pull distributions are reasonable, except
in the vicinity of the ψð3686Þ → γχc1 and γχc2 peaks. The
chi squares per degree of freedom (ndf) are 3.5 and 2.7 for
the inclusive and exclusive distribution fits, respectively.
The chi square is determined using χ2 ¼ Σiððni − nfi Þ=σiÞ2,
whereni,n

f
i , and σi are the number of data events in bin i, the

result of the fit at bin i, and the statistical uncertainty of ni,
respectively, and the sum is over all histogram bins.
A fit is also done to the MC inclusive energy distribution.

The MC shapes are used without convolved asymmetric
Gaussians for the ψð3686Þ → γχcJ peaks. Since only MC
shapes are used, it is not useful to do a simultaneous fit as there
are no common parameters to be determined in such a fit. The
fit matches the inclusive photon energy distribution almost
perfectlywith a chi square close to zero.This is not unexpected
since the signal and background shapes come from the MC
and when combined reconstruct the MC distribution.

VII. BRANCHING FRACTION DETERMINATIONS

The branching fractions are calculated using the follow-
ing equations:

Bðψð3686Þ → γχcJÞ ¼
Nψð3686Þ→γχcJ

ϵψð3686Þ→γχcJ × Nψð3686Þ
; ð1Þ

where Bðψð3686Þ → γχcJÞ is the branching fraction of
ψð3686Þ → γχcJ, Nψð3686Þ→γχcJ is the number of events in
data from the fit, ϵψð3686Þ→γχcJ is the efficiency determined
from MC, and Nψð3686Þ is the number of ψð3686Þ events
[17]. The product branching fraction for ψð3686Þ →
γχcJ; χcJ → γJ=ψ is given by

Bðψð3686Þ → γχcJÞ × BðχcJ → γJ=ψÞ

¼
NχcJ→γJ=ψ

ϵχcJ→γJ=ψ × Nψð3686Þ
; ð2Þ
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FIG. 6. Simultaneous fits to the photon energy distributions of
data. (Top set) Inclusive distribution fit and corresponding pulls,
and (bottom set) exclusive distribution fit and pull distribution.
Peaks from left to right in the top set are ψð3686Þ → γχc2, γχc1,
and γχc0 and χc1 and χc2 → γJ=ψ . The χc0 → γJ=ψ peak is not
visible. The smooth curves in the two plots are the fit results. The
dashed-dotted and dashed curves in the top plot are the back-
ground distribution from the inclusive ψð3686Þ MC with radi-
ative photons removed and the total background, respectively.
The background in the exclusive fit plot is not visible.

TABLE II. Branching fraction results. The indicated uncertainties are statistical only.

Branching Fraction Events (×106) Efficiency Branching Fraction (%)

Bðψð3686Þ → γχc0Þ 4.6871$ 0.0068 0.4692 9.389$ 0.014
Bðψð3686Þ → γχc1Þ 4.9957$ 0.0054 0.4740 9.905$ 0.011
Bðψð3686Þ → γχc2Þ 4.2021$ 0.0055 0.4104 9.621$ 0.013

Bðψð3686Þ → γχc0Þ × Bðχc0 → γJ=ψÞ 0.0123$ 0.0081 0.4920 0.024$ 0.015
Bðψð3686Þ → γχc1Þ × Bðχc1 → γJ=ψÞ 1.8881$ 0.0053 0.5155 3.442$ 0.010
Bðψð3686Þ → γχc2Þ × Bðχc2 → γJ=ψÞ 0.9828$ 0.0041 0.5150 1.793$ 0.008

Bðχc0 → γJ=ψÞ 0.25$ 0.16
Bðχc1 → γJ=ψÞ 34.75$ 0.11
Bðχc2 → γJ=ψÞ 18.64$ 0.08
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Radiative transitions can be studied at BESIII using .e+e− → ψ(2S)

(inclusive)

(exclusive)

ηc(11S0)

J/ψ(13S1)

ψ′(23S1)

ψ′′(13D1)

hc(11P1)

χc0(13P0)

χc1(13P1)
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3.0

3.2

3.4

3.6

3.8
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Z(4430)

Z(3900)

Z(4020)

and the world average full widths [7]. Table V contains our
partial width results, as well as theoretical predictions,
reproduced from Table VI in Ref. [8]. The theoretical
predictions include the linear potential (LP) and screened
potential (SP) models [8], as well as earlier predictions
from a relativistic quark model (RQM) [33], nonrelativistic
potential and Godfrey-Isgur relativized potential models
(NR/GI) [34], and color screened models, calculated with
zeroth order wave functions (SNR0) and first order rela-
tivistically corrected wave functions (SNR1) [35].

X. SUMMARY

Our results, CLEO measurements [9,31,32], previous
BESIII measurements [15,16], and PDG results [7] are
listed in Table IV. Our ψð3686Þ → γχcJ branching fractions
are the most precise. The branching fractions for
ψð3686Þ → γχcJ agree with CLEO within one standard
deviation, except for ψð3686Þ → γχc1 which differs by 1.3
standard deviations. The product branching fractions

Bðψð3686Þ → γχc1Þ × Bðχc1 → γJ=ψÞ and Bðψð3686Þ →
γχc2Þ × Bðχc2 → γJ=ψÞ agree with the previous BESIII
measurements. Because of the difficulty in fitting
ψð3686Þ → γχc0; χc0 → γJ=ψ , our product branching frac-
tion has a very large systematic error compared with those
using exclusive decays.
Partial widths are shown in Table V. For comparison with

models, experimental results have become accurate enough
(partly due to this measurement) to become sensitive to fine
details of the potentials, e.g. relativistic effects, screening
effects, and higher partial waves.
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TABLE IV. Our branching fraction results, other results, and PDG compilation results.

PDG [7] (%) PDG [7] (%)
Branching Fraction This analysis (%) Other (%) Average Fit

Bðψð3686Þ → γχc0Þ 9.389# 0.014# 0.332 9.22# 0.11# 0.46 [9] 9.2# 0.4 9.99# 0.27
Bðψð3686Þ → γχc1Þ 9.905# 0.011# 0.353 9.07# 0.11# 0.54 [9] 8.9# 0.5 9.55# 0.31
Bðψð3686Þ → γχc2Þ 9.621# 0.013# 0.272 9.33# 0.14# 0.61 [9] 8.8# 0.5 9.11# 0.31

Bðψð3686Þ → γχc0Þ × Bðχc0 → γJ=ψÞ 0.024# 0.015# 0.205 0.125# 0.007# 0.013 [31] 0.131# 0.035 0.127# 0.006
0.151# 0.003# 0.010 [15]
0.158# 0.003# 0.006 [16]

Bðψð3686Þ → γχc1Þ × Bðχc1 → γJ=ψÞ 3.442# 0.010# 0.132 3.56# 0.03# 0.12 [31] 2.93# 0.15 3.24# 0.07
3.377# 0.009# 0.183 [15]
3.518# 0.01# 0.120 [16]

Bðψð3686Þ → γχc2Þ × Bðχc2 → γJ=ψÞ 1.793# 0.008# 0.163 1.95# 0.02# 0.07 [31] 1.52# 0.15 1.75# 0.04
1.874# 0.007# 0.102 [15]
1.996# 0.008# 0.070 [16]

Bðχc0 → γJ=ψÞ 0.25# 0.16# 2.15 2# 0.2# 0.2 [32] 1.27# 0.06
Bðχc1 → γJ=ψÞ 34.75# 0.11# 1.70 37.9# 0.8# 2.1 [32] 33.9# 1.2
Bðχc2 → γJ=ψÞ 18.64# 0.08# 1.69 19.9# 0.5# 1.2 [32] 19.2# 0.7

TABLE V. Partial widths (keV) of radiative transitions for ψð3686Þ → γJ=ψ and χcJ → γJ=ψ . Shown are our experimental results and
predictions from RQM [33]; NR/GI [34]; SNR0 and SNR1 [35], calculated with zeroth order wave functions (SNR0) and first order
relativistically corrected wave functions (SNR1); and LP and SP models [8]. The ΓE1 predictions include only E1 transition calculations,
while the ΓEM results include higher order multipole corrections.

ΓE1 (keV) ΓEM (keV)

Initial State Final State RQM [33] NR/GI [34] SNR0=1 [35] LP [8] SP [8] LP [8] SP [8] This Analysis

ψð3686Þ χc0 26.3 63/26 74/25 27 26 22 22 26.9# 1.8
χc1 22.9 54/29 62/36 45 48 42 45 28.3# 1.9
χc2 18.2 38/24 43/34 36 44 38 46 27.5# 1.7

χc0 J=ψ 121 152/114 167/117 141 146 172 179
χc1 265 314/239 354/244 269 278 306 319 306# 23
χc2 327 424/313 473/309 327 338 284 292 363# 41
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We compute, for the first time using lattice QCD methods, charmonium radiative transition rates

involving states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to

project out various excited-state contributions to three-point correlators computed on quenched aniso-

tropic lattices. In the first lattice QCD calculation of the exotic 1!þ !c1 radiative decay, we find a large

partial width !ð!c1 ! J=c"Þ % 100 keV. We find clear signals for electric dipole and magnetic

quadrupole transition form factors in #c2 ! J=c", calculated for the first time in this framework, and

study transitions involving excited c and #c1;2 states. We calculate hindered magnetic dipole transition

widths without the sensitivity to assumptions made in model studies and find statistically significant

signals, including a nonexotic vector hybrid candidate Yhyb? ! !c". As well as comparison to experi-

mental data, we discuss in some detail the phenomenology suggested by our results and the extent to

which it mirrors that of quark-potential models, and make suggestions for the interpretation of our results

involving exotic quantum numbered states.
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I. INTRODUCTION

The charmonium system is often described as the ‘‘hy-
drogen atom’’ of meson spectroscopy. Being reasonably
nonrelativistic, it is explained fairly well by potential
models, at least below the open-charm (D "D) threshold.
More recently, it has also been studied using effective field
theory approaches (such as potential nonrelativistic QCD)
and QCD sum rules. Lately there has been a resurgence of
interest in the charmonium system, with the B-factories,
CLEO-c, and BES finding missing states, making more
accurate measurements of properties of these states, and
discovering a number of new resonances that are not easily
explained by the quark model. This has spurred renewed
theoretical interest with much speculation as to whether
these states are hybrids or multiquark/molecular mesons.
To date, there are no charmonium states having manifestly
exotic JPC, such as 1!þ, 0þ!, 2þ!, that would directly
signal physics not present in potential models.

The states below open-charm (D "D) threshold cannot
decay via an Okubo-Zweig-Iizuka allowed strong decay
and so have reasonably narrow widths. Their radiative
transitions can therefore have significant branching ratios
and are experimentally accessible. The transitions from
and production of the, as yet unobserved, exotic 1!þ are
particularly interesting. A lattice calculation of transition
form factors of excited charmonia is therefore timely, and
this is the first such study. The corresponding excited
charmonium spectrum was calculated in lattice QCD in
Ref. [1]. Transition form factors of the lightest few char-
monia, those ground states accessible with interpolating
fields "c!c , were calculated in Ref. [2]. This work brought

to the attention of CLEO-c experimentalists the discrep-
ancy between the lattice calculated value of !ðJ=c !
!c"Þ (and indeed the values predicted in most model
calculations) and the single experimental measurement of
this from Crystal Ball [3]. In a tour-de-force analysis [4], a
much more reliable value was extracted from CLEO-c data
that is in much better agreement with theoretical estimates.
The calculation we will present is performed in the

quenched approximation, neglecting altogether the effect
of light-quark degrees of freedom. As such, it is rather
directly related to the simplest quark-potential models in
which charm quarks move in a static potential of assumed
gluonic origin. Attempts have been made to add in the
effects of light-quark loops to these models [5–7], in some
cases finding that these effects can be large [8]. We will
address this possibility in light of our results.
A strong motivation for developing the lattice QCD

techniques required to extract excited- and exotic-state
radiative transition matrix elements is the versatility of
the method. We can use these methods, tested here in
charmonium, at any computationally feasible quark mass.
In particular, this opens up the possibility of computing, in
a framework close to QCD, the meson photocouplings that
appear in the meson photo-production process to be uti-
lized in the JLab 12 GeV GlueX experiment [9]. In this
paper we will also compare results with the flux-tube
model of gluonic excitations, which to date is the only
theoretical guide to the size of the hybrid couplings and
hence production rates [10,11].
The paper is structured as follows: We begin in Sec. II

with a description of the technology used to construct
three-point correlators and to project onto the contribution
due to various excited states. In Sec. III we present our
results for the transition form factors between various*dudek@jlab.org
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is

V#c !c$
0 #r$ % ! 4

3

!s
r
" br" 32"!s

9m2
c

~#$#r$ ~Sc & ~S !c; (1)

where ~#$#r$ % #$=
!!!!
"
p $3e!$2r2

. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are

h3LJjTj3LJi %

8>>><
>>>:

! L
6#2L"3$ ; J % L" 1

" 1
6 ; J % L
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: (3)

For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
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M1 widths) and all open-charm strong decay amplitudes of all 40 c !c states expected up to the mass of the
4S multiplet, just above 4.4 GeV. The spectrum and radiative widths are evaluated using two models, the
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potential model and in the Godfrey-Isgur model. The open-flavor strong decay amplitudes are determined
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INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine) tensor (hyperfine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.

c c

charm
quark

anti-charm
quark

gluons
(or gluonic field)
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⇥
�igsT

a
ji�

µ
⇤
u(p1) (8)

⇥

�igµ⌫

q2

�
(9)
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⇥ ū(p4) [�iQq0e�
⌫ ]u(p3) (7)

quark-quark QCD:

�iM = ū(p2)
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q = ū(p2) [�iQqe�

µ]u(p1) (1)

antiquark current QED:

j
µ
q̄ = ⌫̄(p1) [�iQqe�

µ] ⌫(p2) (2)

quark current QCD:

j
µ
q = ū(p2)

⇥
�igsT

a
ji�

µ
⇤
u(p1) (3)

antiquark current QCD:

j
µ
q̄ = ⌫̄(p1)

⇥
�igsT

a
ij�

µ
⇤
⌫(p2) (4)

quark-quark QED:
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⇥ ū(p4) [�iQq0e�
⌫ ]u(p3) (7)

quark-antiquark QED:

�iM = ⌫̄(p1) [�iQqe�
µ] ⌫(p2) (8)

⇥

�igµ⌫

q2

�
(9)
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⇥ ū(p4) [�igsT
a
lk�

⌫ ]u(p3) (13)

antiquark-quark QCD:

�iM = ⌫̄(p1)
⇥
�igsT

a
ij�

µ
⇤
⌫(p2) (14)

⇥

�igµ⌫

q2

�
(15)
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QCD

IIIC.  Color Factors

qq′ → qq′ q̄q′ → q̄q′ 

The  (or ) potential depends on the configuration of colors.qq̄ qq
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⇥
�igsT

a
ji�

µ
⇤
u(p1) (11)

⇥

�igµ⌫

q2

�
(12)
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QED  QCD→

IIIC.  Color Factors

qq′ → qq′ q̄q′ → q̄q′ 

The  (or ) potential depends on the configuration of colors.qq̄ qq
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⇥ ū(p4) [�igsT
a
lk�

⌫ ]u(p3) (13)

antiquark-quark QCD:

�iM = ⌫̄(p1)
⇥
�igsT

a
ij�

µ
⇤
⌫(p2) (14)

⇥

�igµ⌫

q2

�
(15)
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 potential: qq  potential: qq̄

 The strong force between quarks is attractive or repulsive depending on the color factor ⟹ C .

IIIC.  Color Factors
The  (or ) potential depends on the configuration of colors.qq̄ qq
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 potential: qq̄

For  in a color singlet (like a meson):qq̄
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 The strong force between quarks is attractive or repulsive depending on the color factor ⟹ C .

IIIC.  Color Factors
The  (or ) potential depends on the configuration of colors.qq̄ qq
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 potential: qq̄

 The strong force between quarks is attractive or repulsive depending on the color factor ⟹ C .

For  in a color singlet (like a meson):qq̄
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Relative strengths of  and  potentials:qq̄ qq
for , 
for , 
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IIIC.  Color Factors
The  (or ) potential depends on the configuration of colors.qq̄ qq
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A third topic is the search for exotica such as hybrids;
the level of mixing between conventional quarkonium and
hybrid basis states falls rapidly with increasing quark mass,
which suggests that nonexotic hybrids may be more easily
distinguished from conventional quarkonia in charmonium
than in the light quark sectors. Since lattice gauge theory
(LGT) predicts that the lightest c !c hybrids lie near 4.4 GeV
[37–40], there is a strong incentive to establish the ‘‘back-
ground’’ spectrum of conventional c !c states up to and
somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is
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. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly
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The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are
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For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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somewhat beyond this mass.

A final topic of current interest is the importance of
mixing between quark model q !q basis states and two-
meson continua, which has been cited as a possible reason
for the low masses of the recently discovered DsJ states
[41,42]. The effects of ‘‘unquenching the quark model’’ by
including meson loops can presumably be studied effec-
tively in the c !c system, in which the experimental spectrum
of states is relatively unambiguous. The success of the q !q
quark model is surprising, in view of the probable impor-
tance of corrections to the valence approximation; the
range of validity of the naive ‘‘quenched’’ q !q quark model
is an interesting and open question [43].

Motivated by this revived interest in c !c spectroscopy, we
have carried out a theoretical study of the expected prop-
erties of charmonium states, notably the poorly understood
higher-mass c !c levels above DD threshold. Two variants of
potential models are used in this study, a conventional
nonrelativistic model based on the Schrödinger equation
with a Coulomb plus linear potential, and the Godfrey-
Isgur relativized potential model. We give results for all
states in the multiplets 1! 4S, 1! 3P, 1! 2D, 1! 2F,
and 1G, comprising 40 c !c resonances in total. Predictions
are given for quantities which are likely to be of the great-
est experimental interest, which are the spectrum of states,
E1 (and some M1) electromagnetic transition rates, and
strong partial and total widths for states above open-charm
threshold.

Similar results for many of the electromagnetic transi-
tion rates have recently been reported by Ebert et al. [44].
The ‘"‘! leptonic and two-photon widths are not dis-
cussed in detail here, as they have been considered exten-
sively elsewhere; see for example [45–48] and references
cited therein.

II. SPECTRUM

A. Nonrelativistic potential model

As a minimal model of the charmonium system we use a
nonrelativistic potential model, with wave functions deter-
mined by the Schrödinger equation with a conventional
quarkonium potential. We use the standard color Coulomb
plus linear scalar form, and also include a Gaussian-
smeared contact hyperfine interaction in the zeroth-order
potential. The central potential is

V#c !c$
0 #r$ % ! 4

3

!s
r
" br" 32"!s

9m2
c

~#$#r$ ~Sc & ~S !c; (1)

where ~#$#r$ % #$=
!!!!
"
p $3e!$2r2

. The four parameters (!s,
b, mc, $) are determined by fitting the spectrum.

The spin-spin contact hyperfine interaction is one of the
spin-dependent terms predicted by one gluon exchange
(OGE) forces. The contact form / ## ~x$ is actually an
artifact of an O#v2

q=c2$ expansion of the T-matrix [49],
so replacing it by an interaction with a range 1=$ compa-
rable to 1=mc is not an unwarranted modification.

We treat the remaining spin-dependent terms as mass
shifts using leading-order perturbation theory. These are
the OGE spin-orbit and tensor interactions and a longer-
ranged inverted spin-orbit term, which arises from the
assumed Lorentz scalar confinement. These are explicitly

Vspin-dep %
1

m2
c

"#
2!s
r3 !

b
2r

$
~L & ~S" 4!s

r3 T
%
: (2)

The spin-orbit operator is diagonal in a jJ;L; Si basis,
with the matrix elements h ~L & ~Si % 'J#J" 1$ ! #L#L"
1$ ! S#S" 1$(=2. The tensor operator T has nonvanishing
diagonal matrix elements only between L > 0 spin-triplet
states, which are

h3LJjTj3LJi %

8>>><
>>>:

! L
6#2L"3$ ; J % L" 1

" 1
6 ; J % L

! #L"1$
6#2L!1$ ; J % L! 1

: (3)

For experimental input we use the masses of the 11 rea-
sonably well-established c !c states, which are given in
Table I (rounded to 1 MeV). The parameters that follow
from fitting these masses are #!s; b; mc;$$ %
#0:5461; 0:1425 GeV2; 1:4794 GeV; 1:0946 GeV$. Given
these values, we can predict the masses and matrix ele-
ments of the currently unknown c !c states; Table I and
Fig. 1 show the predicted spectrum.

B. Godfrey-Isgur relativized potential model

The Godfrey-Isgur model is a ‘‘relativized’’ extension of
the nonrelativistic model of the previous section. This
model assumes a relativistic dispersion relation for the
quark kinetic energy, a QCD-motivated running coupling
!s#r$, a flavor-dependent potential smearing parameter $,
and replaces factors of quark mass with quark kinetic
energy. Details of the model and the method of solution
may be found in Ref. [51]. The Hamiltonian consists of a
relativistic kinetic term and a generalized quark-antiquark
potential

H % H0 " Vq !q#~p; ~r$; (4)

where
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Quark Model:  Assume hadrons are made of quarks interacting via a potential.

Higher charmonia

T. Barnes,1,* S. Godfrey,2,† and E. S. Swanson3,‡

1Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
and Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

2Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, Ottawa K1S 5B6, Canada
3Rudolph Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, UK

(Received 29 May 2005; published 29 September 2005)

This paper gives results for the spectrum, all allowed E1 radiative partial widths (and some important
M1 widths) and all open-charm strong decay amplitudes of all 40 c !c states expected up to the mass of the
4S multiplet, just above 4.4 GeV. The spectrum and radiative widths are evaluated using two models, the
relativized Godfrey-Isgur model and a nonrelativistic potential model. The electromagnetic transitions are
evaluated using Coulomb plus linear plus smeared hyperfine wave functions, both in a nonrelativistic
potential model and in the Godfrey-Isgur model. The open-flavor strong decay amplitudes are determined
assuming harmonic oscillator wave functions and the 3P0 decay model. This work is intended to motivate
future experimental studies of higher-mass charmonia, and may be useful for the analysis of high-statistics
data sets to be accumulated by the BES, CLEO, and GSI facilities.

DOI: 10.1103/PhysRevD.72.054026 PACS numbers: 12.39.2x, 13.20.Gd, 13.25.Gv, 14.40.Gx

INTRODUCTION

Since its discovery in 1974 [1,2], the charmonium sys-
tem has become the prototypical ’hydrogen atom’ of me-
son spectroscopy [3–6]. The experimentally clear
spectrum of relatively narrow states below the open-charm
DD threshold of 3.73 GeV can be identified with the 1S,
1P, and 2S c !c levels predicted by potential models, which
incorporate a color Coulomb term at short distances and a
linear scalar confining term at large distances. Spin-
dependent interquark forces are evident in the splittings
of states within these multiplets, and the observed split-
tings are consistent with the predictions of a one gluon
exchange (OGE) Breit-Fermi Hamiltonian, combined with
a linear scalar confining interaction. Discussions of the
theoretical importance and experimental status of heavy
quarkonium, including recent experimental results for
charmonium, have been given by Quigg [7], Galik [8],
the CERN quarkonium working group [9], Seth [10–12],
and Swarnicki [13].

Recently there has been a resurgence of interest in
charmonium, due to the realization that B factories can
contribute to the study of the missing c !c states [14], and to
high-statistics experiments at BES [15] and CLEO [16] and
the planned GSI p !p facility [17].

The possibility of contributions from B factories was
dramatically illustrated by the recent discovery of the long
missing 21S0 !0c state by the Belle Collaboration [18],
which has since been confirmed by BABAR [19], and
has also been observed by CLEO in "" collisions [20].

Additional interest in c !c spectroscopy has followed the
discovery of the remarkable X(3872) by Belle [21] and
CDF [22] in B decays to J= #!#"; assuming that this is a
real resonance rather than a threshold effect, the X(3872) is
presumably either a DD# charmed meson molecule [23–
25] or a narrow J $ 2 D-wave c !c state [26,27]. Very recent
observations of the X(3872) in "J= and !J= by Belle
support a 1!! DD# molecule assignment [28,29].

There has also been experimental activity in the spin-
singlet P-wave sector, with recent reports of the observa-
tion of the elusive 11P1 hc state by CLEO [10,30]. Finally,
the surprisingly large cross sections for double charmo-
nium production in e!e" reported by Belle [31–34] sug-
gest that it may be possible to study C $ %!& c !c states in
e!e" without using the higher-order O%$4& two-photon
annihilation process.

One open topic of great current interest in c !c spectros-
copy is the search for the  2%13D2& and !c2%11D2& states,
which are expected to be quite narrow due to the absence of
open-charm decay modes.

A second topic is the Lorentz nature of confinement; in
pure c !c models this is tested by the multiplet splittings of
orbitally excited c !c states. For example, with pure scalar
confinement as is normally assumed there is no spin-spin
hyperfine interaction at O%v2=c2&, so the masses of spin-
singlets (such as the 1P1 hc) are degenerate with the
corresponding triplet center of gravity (c.o.g.) (here this
is the 3PJ c.o.g., at 3525 MeV). In the original Cornell
model [35] it was assumed that confinement acts as the
time component of a Lorentz vector, which lifts the degen-
eracy of the hc and the 3PJ c.o.g. Another possibility is that
confinement may be a more complicated mix of scalar and
timelike vector [36]. Of course these simple potential
model considerations may be complicated by mass shifts
due to other effects, such as couplings to open-flavor
channels [27].
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One example:

“Coulomb” confinement

spin-spin (hyperfine)

spin-orbit (fine) tensor (hyperfine)

Solve the Schrödinger equation;  fix parameters using experiment;  predict masses of higher states.

c c

charm
quark

anti-charm
quark

gluons
(or gluonic field)

For states with  and ,
mass splittings for different  can
be modeled by the spin-spin term 
(compare  and ).

L = 0 n = 1
S

ηc(1S) J/ψ (1S)
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Use the quark model to predict the mass of a doubly-bottom tetraquark ( ).bbūd̄

Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄ Tetraquark
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Recently, the LHCb Collaboration discovered the first doubly charmed baryon Ξþþ
cc ¼ ccu at

3621.40# 0.78 MeV, very close to our theoretical prediction. We use the same methods to predict a
doubly bottom tetraquarkTðbbūd̄Þwith JP ¼ 1þ at 10 389# 12 MeV, 215MeVbelow theB−B̄&0 threshold
and 170 MeV below the threshold for decay to B−B̄0γ. The Tðbbūd̄Þ is therefore stable under strong and
electromagnetic interactions and can only decay weakly, the first exotic hadron with such a property. On the
other hand, the mass of Tðccūd̄Þwith JP ¼ 1þ is predicted to be 3882# 12 MeV, 7MeVabove theD0D&þ

threshold and 148MeVabove theD0Dþγ threshold.Tðbcūd̄Þwith JP ¼ 0þ is predicted at 7134# 13 MeV,
11 MeV below the B̄0D0 threshold. Our precision is not sufficient to determine whether bcūd̄ is actually
above or below the threshold. It could manifest itself as a narrow resonance just at threshold.

DOI: 10.1103/PhysRevLett.119.202001

Introduction.—The question whether QQq̄q̄ tetraquarks
with two heavy quarks Q and two light antiquarks q̄ are
stable or unstable against decay into two Qq̄ mesons has a
long history. It has been largely undecided, mainly due to a
lack of experimental information about the strength of the
interaction between two heavy quarks.
The very recent discovery of the doubly charmed baryon

Ξcc by the LHCb Collaboration at CERN has now provided
the crucial experimental input which allows this issue to be
finally resolved.
LHCb has observed the doubly charmed baryon Ξþþ

cc ¼
ccu with a mass of 3621.40# 0.78 MeV [1]. This value is
consistent with several predictions, including our value of
3627# 12 MeV [2,3]. (A Ξþ

cc candidate observed previ-
ously by the SELEX Collaboration at Fermilab [4] has not
been confirmed by other experiments and has a mass about
100 MeV lighter, outside the range of our prediction.)
Here we use similar methods to those in Ref. [2] and

earlier works [5] to predict the mass of the ground-state
bbūd̄ tetraquark with spin-parity JP ¼ 1þ, M½Tðbbūd̄Þ( ¼
10 389# 12 MeV.We stress that our work is the first to use
the assumption, validated by our successful prediction of the
Ξcc mass, that the binding energy of two heavy quarksQ in a
color-antitripletQQ state is half that ofQQ̄ in a color singlet.
Angular momentum and parity conservation in strong

and electromagnetic (EM) interactions forbid a state with
JP ¼ 1þ from decaying strongly or electromagnetically
into two pseudoscalars in any partial wave. Therefore,
bbūd̄ with JP ¼ 1þ cannot decay into BB. The lowest-
mass hadronic channel allowed by angular momentum and
parity is BB&, most favorably in S wave. This channel is,
however, kinematically closed, because the Tðbbūd̄Þ mass
is 215 MeV below BB& threshold at 10 604 MeV.
M½Tðbbūd̄Þ( is also 170 MeV below 2mB, the relevant
threshold for EM decay to B−B̄0γ.

The B mesons are the lightest states that carry open
bottom, so the bbūd̄ tetraquark cannot decay through
strong or EM interactions which conserve heavy flavor.
It can only decay weakly, when one of the b quarks decays
into a c quark and a virtualW−. A typical decay is therefore
ðbbūd̄Þ → B̄Dπ−ðρ−Þ, etc.
Themain challenge in the prediction of theTðbbūd̄Þmass

is the estimate of binding energy between the two b quarks
[6–8]. Table IX of Ref. [8] provides a compilation of earlier
mass estimates of various QQq̄q̄ tetraquarks. In Ref. [2]
we estimated the binding energy between two heavy quarks
Q by assuming that QQ binding is one half of the Q̄Q
binding which can be obtained from quarkonia. When
applied to the ccu baryon Ξcc this led to the prediction
MðΞccÞ ¼ 3627# 12 MeV, very close to the experimen-
tally measured ccu mass of 3621.40# 0.78 MeV.
The above relation between quark-quark and quark-

antiquark binding is exact in the one-gluon-exchange
weak-coupling limit. Its successful extension beyond
weak coupling implies that the heavy quark potential
factorizes into a color-dependent and a space-dependent
part, with the space-dependent part being the same for QQ
and Q̄Q. The relative factor 1=2 is then automatic, just
as in the weak-coupling limit, resulting from the color
algebra.
Calculation of the bbūd̄ mass.—In the present Letter

we build on the accuracy of the Ξcc mass prediction and
assume the same relation is true for bb binding energy in a
bbūd̄ tetraquark. In order to obtain a state with the lowest
possible mass, we further assume that all four quarks are in
a relative S wave and that the ū and d̄ light antiquarks bind
into a color-triplet “good” antidiquark with spin and isospin
zero. The bb diquark must then be a color antitriplet and
Fermi statistics dictates it has spin 1. The total spin and
parity are then JP ¼ 1þ.
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1.  Use light quark mesons and baryons to calculate the effective masses of the  
up, down, and strange quarks.

2.  Use open charm and open bottom mesons and baryons ( , , , , , )
to calculate the effective masses of charm and bottom quarks.

3.  Use charmonium and bottomonium mesons ( , , , )
to calculate  and  binding energies.

4.  Use color factors to relate  and  binding energies ( ) to  and  binding energies ( ).

5.  Use the results above to predict the mass of the doubly charmed  baryon.

6.  Use the same method to predict the mass of a doubly bottom tetraquark ( ).

D D* B B* Λb Λc

ηc(1S) J/ψ(1S) ηb(1S) Υ(1S)
cc̄ bb̄

cc̄ bb̄ 1 cc bb 3̄

Ξcc

bbūd̄

IIID.  Doubly-Bottom Tetraquark
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s i � hŜ2
ni � 2 h ~̂Ss1 · ~̂Ss2i

i
(7)

=
1

4


J(J + 1)� 3(

3

4
)� 2(

1

4
)

�
= �1

2
(8)

1

Use:

Notes on Quark Flavor

RM

May 12, 2021

1 Doubly-Bottom Tetraquark

For mesons:

M
(m) = m

(m)
1 +m

(m)
2 + 4a

h ~̂S1 · ~̂S2i
m

(m)
1 m

(m)
2

(1)

( ~̂S1 + ~̂S2)
2 = Ĵ

2 = Ŝ
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ni � 2 h ~̂Ss1 · ~̂Ss2i

i
(7)

=
1

4


J(J + 1)� 3(

3

4
)� 2(

1

4
)

�
= �1

2
(8)

1

Notes on Quark Flavor

RM

May 12, 2021

1 Doubly-Bottom Tetraquark

For mesons:

M
(m) = m

(m)
1 +m

(m)
2 + 4a

h ~̂S1 · ~̂S2i
m

(m)
1 m

(m)
2

(1)

( ~̂S1 + ~̂S2)
2 = Ĵ
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2
1 + Ŝ
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hĴ2i � hŜ2
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hĴ2i � 2 hŜ2
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⇥
�igsT

a
ji�

µ
⇤
u(p1) (26)

⇥

�igµ⌫

q2

�
(27)
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q = ū(p2) [�iQqe�

µ]u(p1) (19)

antiquark current QED:

j
µ
q̄ = ⌫̄(p1) [�iQqe�

µ] ⌫(p2) (20)

quark current QCD:

j
µ
q = ū(p2)
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1.  Use light quark mesons and baryons to calculate the effective masses of the up, down, and strange quarks.
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2.  Use open charm and open bottom mesons and baryons to find the effective masses of charm and bottom quarks.

For mesons, use ,  ( ), ,  ( ):D D* cū B B* bū
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The large number of Bc mesons observed by LHCb suggests a sizable cross section for producing doubly
heavy baryons in the same experiment. Motivated by this, we estimate masses of the doubly heavy J ¼ 1=2
baryons Ξcc, Ξbb, and Ξbc, and their J ¼ 3=2 hyperfine partners, using a method which accurately predicts
the masses of ground-state baryons with a single heavy quark. We obtain MðΞccÞ ¼ 3627$ 12 MeV,
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ccÞ¼3690$12MeV, MðΞbbÞ ¼ 10162$ 12 MeV, MðΞ%
bbÞ ¼ 10184$ 12 MeV,MðΞbcÞ ¼ 6914$

13 MeV, MðΞ0
bcÞ ¼ 6933$ 12 MeV, and MðΞ%

bcÞ ¼ 6969$ 14 MeV. As a byproduct, we estimate the
hyperfine splitting between B%

c and Bc mesons to be 68$ 8 MeV. We discuss P-wave excitations,
production mechanisms, decay modes, lifetimes, and prospects for detection of the doubly heavy baryons.
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I. INTRODUCTION

Some simple arguments based on the quark model have
been shown to accurately predict the spectrum of baryons
containing a single b quark [1,2]. The question then arises:
Can such methods be applied to systems with two or more
heavy quarks? So far the only experimental evidence for
such states comes from the SELEX experiment, which has
reported a state at 3520 MeV containing two charm quarks
and a down quark [3,4], with a conference report of states at
3460 and 3780 MeV containing two charm quarks and an
up quark [5]. Despite several searches [6–10], no other
experiment has confirmed this result. On the optimistic
side, one should notice that a large number of Bc mesons
has been seen both by the Tevatron experiments [11,12]
mand by LHCb [13–19]. From this one can infer [20] a
substantial cross section for simultaneous production of
two pairs of heavy quarks and their subsequent coalescence
into a doubly heavy hadron.
In this paper we estimate the mass of the lowest-lying

J ¼ 1=2 ccu or ccd state, finding a value consistent with
many other estimates lying well above the SELEX results.
We estimate its branching fractions to various final states
and discuss the possibility of observing bcu, bcd, bbu, and
bbd ground-state baryons. We also estimate the masses of
the hyperfine (J ¼ 3=2) partners of these states, comment
briefly on P-wave excitations, and discuss production,
decays, and detection of these states.
In order to have a self-contained discussion, we review

calculations based on similar methods for baryons and

mesons containing only u, d, and s quarks (Sec. II) and
those containing a single charmed quark (Sec. III) or a
single bottom quark (Sec. IV). These last two sections also
include for completeness discussions of states with both
charm (or beauty) and strangeness. Although we do not
discuss ccs, bcs, or bbs states in the present paper,
regarding their observation as far in the future, we give
enough information that their masses may be readily
calculated using the present methods.
In what follows we shall neglect the difference between

the masses of u and d, referring to them collectively as q.
Masses of states with nonzero isospin are taken to be isospin
averages. (Isospin splittings of doubly heavy baryons are
expected not to exceed several MeV [21,22].) We calculate
the masses of the lowest-lying states of ccq in Sec. V, bbq in
Sec. VI, and bcq in Sec. VII, commenting briefly on P-wave
excitations in Sec. VIII. Likely decay modes are noted in
Sec. IX, some suggestions for observing the states are made
in Sec. X, while Sec. XI concludes.

II. STATES CONTAINING ONLY
u, d, AND s QUARKS

A. Baryons

The following contributions suffice to describe the
ground-state baryons containing u, d, s [23,24]:

(i) The effective masses of the u, d, and s quarks.
(ii) Their mutual hyperfine interactions.

(With the addition of heavy-quark masses, these methods
were already used in Refs. [23] and [25] to estimate masses
of baryons with two heavy quarks.)
In Table I we summarize that description. For all masses

we use values quoted by the Particle Data Group [26]
*marek@proton.tau.ac.il
†rosner@hep.uchicago.edu
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For charmonium and bottomonium, allow for a tighter binding (due to the smaller radius) by 
adding an additional binding energy (  and ) and hyperfine coupling (  and ). Bcc̄ Bbb̄ acc̄ abb̄

3.  Use charmonium and bottomonium mesons to calculate  and  binding energies.cc̄ bb̄
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Using  and neglecting the small differences between  and  and 
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I. INTRODUCTION

Some simple arguments based on the quark model have
been shown to accurately predict the spectrum of baryons
containing a single b quark [1,2]. The question then arises:
Can such methods be applied to systems with two or more
heavy quarks? So far the only experimental evidence for
such states comes from the SELEX experiment, which has
reported a state at 3520 MeV containing two charm quarks
and a down quark [3,4], with a conference report of states at
3460 and 3780 MeV containing two charm quarks and an
up quark [5]. Despite several searches [6–10], no other
experiment has confirmed this result. On the optimistic
side, one should notice that a large number of Bc mesons
has been seen both by the Tevatron experiments [11,12]
mand by LHCb [13–19]. From this one can infer [20] a
substantial cross section for simultaneous production of
two pairs of heavy quarks and their subsequent coalescence
into a doubly heavy hadron.
In this paper we estimate the mass of the lowest-lying

J ¼ 1=2 ccu or ccd state, finding a value consistent with
many other estimates lying well above the SELEX results.
We estimate its branching fractions to various final states
and discuss the possibility of observing bcu, bcd, bbu, and
bbd ground-state baryons. We also estimate the masses of
the hyperfine (J ¼ 3=2) partners of these states, comment
briefly on P-wave excitations, and discuss production,
decays, and detection of these states.
In order to have a self-contained discussion, we review

calculations based on similar methods for baryons and

mesons containing only u, d, and s quarks (Sec. II) and
those containing a single charmed quark (Sec. III) or a
single bottom quark (Sec. IV). These last two sections also
include for completeness discussions of states with both
charm (or beauty) and strangeness. Although we do not
discuss ccs, bcs, or bbs states in the present paper,
regarding their observation as far in the future, we give
enough information that their masses may be readily
calculated using the present methods.
In what follows we shall neglect the difference between

the masses of u and d, referring to them collectively as q.
Masses of states with nonzero isospin are taken to be isospin
averages. (Isospin splittings of doubly heavy baryons are
expected not to exceed several MeV [21,22].) We calculate
the masses of the lowest-lying states of ccq in Sec. V, bbq in
Sec. VI, and bcq in Sec. VII, commenting briefly on P-wave
excitations in Sec. VIII. Likely decay modes are noted in
Sec. IX, some suggestions for observing the states are made
in Sec. X, while Sec. XI concludes.

II. STATES CONTAINING ONLY
u, d, AND s QUARKS

A. Baryons

The following contributions suffice to describe the
ground-state baryons containing u, d, s [23,24]:

(i) The effective masses of the u, d, and s quarks.
(ii) Their mutual hyperfine interactions.

(With the addition of heavy-quark masses, these methods
were already used in Refs. [23] and [25] to estimate masses
of baryons with two heavy quarks.)
In Table I we summarize that description. For all masses

we use values quoted by the Particle Data Group [26]
*marek@proton.tau.ac.il
†rosner@hep.uchicago.edu
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Combining all the pieces:

also calculate single-charm and single-bottom baryons
with the same method and compare to experiment 
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⇥ ū(p4) [�igsT
a
lk�

⌫ ]u(p3) (61)

4

M(⌅++
cc ) = 2m(b)

c +m
(b)
u +Bcc + 4acc

"
h ~̂Sc1 · ~̂Sc2i
(m(b)

c )2

#
+ 4a0

"
2 h ~̂Sc · ~̂Sui
m

(b)
c m

(b)
u

#
(45)

= 2m(b)
c +m

(b)
u +Bcc +

acc

(m(b)
c )2

� 4a0

m
(b)
c m

(b)
u

(46)

= [2(1710.5) + 363� 129 + 14.2� 4(50)(363)/1710.5] MeV (47)

= 3627± 12 MeV (48)

2 Color Factors

quark current QED:

j
µ
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Sūd̄ = 0 (57)

h ~̂Sc1 · ~̂Sc2i = +
1

4
(58)
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I. INTRODUCTION

Some simple arguments based on the quark model have
been shown to accurately predict the spectrum of baryons
containing a single b quark [1,2]. The question then arises:
Can such methods be applied to systems with two or more
heavy quarks? So far the only experimental evidence for
such states comes from the SELEX experiment, which has
reported a state at 3520 MeV containing two charm quarks
and a down quark [3,4], with a conference report of states at
3460 and 3780 MeV containing two charm quarks and an
up quark [5]. Despite several searches [6–10], no other
experiment has confirmed this result. On the optimistic
side, one should notice that a large number of Bc mesons
has been seen both by the Tevatron experiments [11,12]
mand by LHCb [13–19]. From this one can infer [20] a
substantial cross section for simultaneous production of
two pairs of heavy quarks and their subsequent coalescence
into a doubly heavy hadron.
In this paper we estimate the mass of the lowest-lying

J ¼ 1=2 ccu or ccd state, finding a value consistent with
many other estimates lying well above the SELEX results.
We estimate its branching fractions to various final states
and discuss the possibility of observing bcu, bcd, bbu, and
bbd ground-state baryons. We also estimate the masses of
the hyperfine (J ¼ 3=2) partners of these states, comment
briefly on P-wave excitations, and discuss production,
decays, and detection of these states.
In order to have a self-contained discussion, we review

calculations based on similar methods for baryons and

mesons containing only u, d, and s quarks (Sec. II) and
those containing a single charmed quark (Sec. III) or a
single bottom quark (Sec. IV). These last two sections also
include for completeness discussions of states with both
charm (or beauty) and strangeness. Although we do not
discuss ccs, bcs, or bbs states in the present paper,
regarding their observation as far in the future, we give
enough information that their masses may be readily
calculated using the present methods.
In what follows we shall neglect the difference between

the masses of u and d, referring to them collectively as q.
Masses of states with nonzero isospin are taken to be isospin
averages. (Isospin splittings of doubly heavy baryons are
expected not to exceed several MeV [21,22].) We calculate
the masses of the lowest-lying states of ccq in Sec. V, bbq in
Sec. VI, and bcq in Sec. VII, commenting briefly on P-wave
excitations in Sec. VIII. Likely decay modes are noted in
Sec. IX, some suggestions for observing the states are made
in Sec. X, while Sec. XI concludes.

II. STATES CONTAINING ONLY
u, d, AND s QUARKS

A. Baryons

The following contributions suffice to describe the
ground-state baryons containing u, d, s [23,24]:

(i) The effective masses of the u, d, and s quarks.
(ii) Their mutual hyperfine interactions.

(With the addition of heavy-quark masses, these methods
were already used in Refs. [23] and [25] to estimate masses
of baryons with two heavy quarks.)
In Table I we summarize that description. For all masses

we use values quoted by the Particle Data Group [26]
*marek@proton.tau.ac.il
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Combining all the pieces:

also calculate single-charm and single-bottom baryons
with the same method and compare to experiment 
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�iM = ū(p2) [�iQqe�
µ]u(p1) (53)

⇥

�igµ⌫

q2

�
(54)
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⇥
�igsT

a
ji�

µ
⇤
u(p1) (59)

⇥

�igµ⌫

q2

�
(60)
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ui � 2 h ~̂Sc1 · ~̂Sc2i

i
(43)

=
1

2


J(J + 1)� 3(

3

4
)� 2(

1

4
)

�
= �1 (44)

3

Bcc̄ =
1

4
[3M(J/ ) +M(⌘c)]� 2m(m)

c (29)

= �258.0 MeV (30)

acc̄

(m(m)
c )2

=
1

4
[M(J/ )�M(⌘c)] (31)

= 28.4 MeV (32)

Bbb̄ =
1

4
[3M(⌥(1S)) +M(⌘b)]� 2m(m)

b (33)

= �562.8 MeV (34)

abb̄

(m(m)
b )2

=
1

4
[M(⌥(1S))�M(⌘b)] (35)

= 15.6 MeV (36)

Bcc =
1

2
Bcc̄ = �129.0 MeV (37)

acc

(m(b)
c )2

⇡ 1

2

acc̄

(m(m)
c )2

= 14.2 MeV (38)

Bbb =
1

2
Bbb̄ = �281.4 MeV (39)

abb

(m(b)
b )2

⇡ 1

2

abb̄

(m(m)
b )2

= 7.8 MeV (40)

For ⌅+ cc
++ (ccu) with J = 1

2 :

Scc = 1 (41)

h ~̂Sc1 · ~̂Sc2i = +
1

4
(42)

2 h ~̂Sc · ~̂Sui =
1

2

h
hĴ2i � 2 hŜ2
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5.  Use the previous results to predict the mass of the doubly charmed  baryon.Ξcc

Baryons with two heavy quarks: Masses, production, decays, and detection
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The large number of Bc mesons observed by LHCb suggests a sizable cross section for producing doubly
heavy baryons in the same experiment. Motivated by this, we estimate masses of the doubly heavy J ¼ 1=2
baryons Ξcc, Ξbb, and Ξbc, and their J ¼ 3=2 hyperfine partners, using a method which accurately predicts
the masses of ground-state baryons with a single heavy quark. We obtain MðΞccÞ ¼ 3627$ 12 MeV,
MðΞ%

ccÞ¼3690$12MeV, MðΞbbÞ ¼ 10162$ 12 MeV, MðΞ%
bbÞ ¼ 10184$ 12 MeV,MðΞbcÞ ¼ 6914$

13 MeV, MðΞ0
bcÞ ¼ 6933$ 12 MeV, and MðΞ%

bcÞ ¼ 6969$ 14 MeV. As a byproduct, we estimate the
hyperfine splitting between B%

c and Bc mesons to be 68$ 8 MeV. We discuss P-wave excitations,
production mechanisms, decay modes, lifetimes, and prospects for detection of the doubly heavy baryons.
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I. INTRODUCTION

Some simple arguments based on the quark model have
been shown to accurately predict the spectrum of baryons
containing a single b quark [1,2]. The question then arises:
Can such methods be applied to systems with two or more
heavy quarks? So far the only experimental evidence for
such states comes from the SELEX experiment, which has
reported a state at 3520 MeV containing two charm quarks
and a down quark [3,4], with a conference report of states at
3460 and 3780 MeV containing two charm quarks and an
up quark [5]. Despite several searches [6–10], no other
experiment has confirmed this result. On the optimistic
side, one should notice that a large number of Bc mesons
has been seen both by the Tevatron experiments [11,12]
mand by LHCb [13–19]. From this one can infer [20] a
substantial cross section for simultaneous production of
two pairs of heavy quarks and their subsequent coalescence
into a doubly heavy hadron.
In this paper we estimate the mass of the lowest-lying

J ¼ 1=2 ccu or ccd state, finding a value consistent with
many other estimates lying well above the SELEX results.
We estimate its branching fractions to various final states
and discuss the possibility of observing bcu, bcd, bbu, and
bbd ground-state baryons. We also estimate the masses of
the hyperfine (J ¼ 3=2) partners of these states, comment
briefly on P-wave excitations, and discuss production,
decays, and detection of these states.
In order to have a self-contained discussion, we review

calculations based on similar methods for baryons and

mesons containing only u, d, and s quarks (Sec. II) and
those containing a single charmed quark (Sec. III) or a
single bottom quark (Sec. IV). These last two sections also
include for completeness discussions of states with both
charm (or beauty) and strangeness. Although we do not
discuss ccs, bcs, or bbs states in the present paper,
regarding their observation as far in the future, we give
enough information that their masses may be readily
calculated using the present methods.
In what follows we shall neglect the difference between

the masses of u and d, referring to them collectively as q.
Masses of states with nonzero isospin are taken to be isospin
averages. (Isospin splittings of doubly heavy baryons are
expected not to exceed several MeV [21,22].) We calculate
the masses of the lowest-lying states of ccq in Sec. V, bbq in
Sec. VI, and bcq in Sec. VII, commenting briefly on P-wave
excitations in Sec. VIII. Likely decay modes are noted in
Sec. IX, some suggestions for observing the states are made
in Sec. X, while Sec. XI concludes.

II. STATES CONTAINING ONLY
u, d, AND s QUARKS

A. Baryons

The following contributions suffice to describe the
ground-state baryons containing u, d, s [23,24]:

(i) The effective masses of the u, d, and s quarks.
(ii) Their mutual hyperfine interactions.

(With the addition of heavy-quark masses, these methods
were already used in Refs. [23] and [25] to estimate masses
of baryons with two heavy quarks.)
In Table I we summarize that description. For all masses

we use values quoted by the Particle Data Group [26]
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also calculate single-charm and single-bottom baryons
with the same method and compare to experiment 
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q = ū(p2) [�iQqe�

µ]u(p1) (49)

antiquark current QED:

j
µ
q̄ = ⌫̄(p1) [�iQqe�

µ] ⌫(p2) (50)

quark current QCD:

j
µ
q = ū(p2)
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h ~̂Sū · ~̂Sd̄i = �3

4
(59)

(60)

2 Color Factors

quark current QED:

j
µ
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Observation of the Doubly Charmed Baryon Ξ++
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A highly significant structure is observed in the Λþ
c K−πþπþ mass spectrum, where the Λþ

c baryon is
reconstructed in the decay mode pK−πþ. The structure is consistent with originating from a weakly
decaying particle, identified as the doubly charmed baryon Ξþþ

cc . The difference between the masses of the
Ξþþ
cc and Λþ

c states is measured to be 1334.94" 0.72ðstat:Þ " 0.27ðsyst.Þ MeV=c2, and the Ξþþ
cc mass is

then determined to be 3621.40" 0.72ðstat:Þ " 0.27ðsyst.Þ " 0.14ðΛþ
c Þ MeV=c2, where the last uncer-

tainty is due to the limited knowledge of the Λþ
c mass. The state is observed in a sample of proton-proton

collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an
integrated luminosity of 1.7 fb−1, and confirmed in an additional sample of data collected at 8 TeV.

DOI: 10.1103/PhysRevLett.119.112001

The quark model [1–3] predicts the existence of multip-
lets of baryon and meson states. Those states composed of
the lightest four quarks (u, d, s, c) form SU(4) multiplets
[4]. Numerous states with charm quantum number C ¼ 0
or C ¼ 1 have been discovered, including all of the
expected qq̄ and qqq ground states [5]. Three weakly
decaying qqq states with C ¼ 2 are expected: one isospin
doublet (Ξþþ

cc ¼ ccu and Ξþ
cc ¼ ccd) and one isospin

singlet (Ωþ
cc ¼ ccs), each with spin parity JP ¼ 1=2þ.

The properties of these baryons have been calculated with
a variety of theoretical models. In most cases, the masses of
the Ξcc states are predicted to lie in the range 3500 to
3700 MeV=c2 [6–33]. The masses of the Ξþþ

cc and Ξþ
cc

states are expected to differ by only a few MeV=c2, due to
approximate isospin symmetry [34–36]. Most predictions
for the lifetime of the Ξþ

cc baryon are in the range 50 to
250 fs, and the lifetime of the Ξþþ

cc baryon is expected to be
three to four times longer at 200 to 700 fs [10,11,19,24,
37–40]. While both are expected to be produced at hadron
colliders [41–43], the longer lifetime of the Ξþþ

cc baryon
should make it significantly easier to observe than the Ξþ

cc
baryon in such experiments, due to the use of real-time
(online) event-selection requirements designed to reject
backgrounds originating from the primary interac-
tion point.
Experimentally, there is a long-standing puzzle in the Ξcc

system. Observations of the Ξþ
cc baryon at a mass of 3519"

2 MeV=c2 with signal yields of 15.9 events over 6.1" 0.5
background in the final state Λþ

c K−πþ (6.3σ significance),

and 5.62 events over 1.38" 0.13 background in the final
state pDþK− (4.8σ significance) were reported by the
SELEX Collaboration [44,45]. Their results included a
number of unexpected features, notably a short lifetime and
a large production rate relative to that of the singly charmed
Λþ
c baryon. The lifetime was stated to be shorter than 33 fs

at the 90% confidence level, and SELEX concluded
that 20% of all Λþ

c baryons observed by the experiment
originated from Ξþ

cc decays, implying a relative Ξcc
production rate several orders of magnitude larger than
theoretical expectations [11]. Searches from the FOCUS
[46], BABAR [47], and Belle [48] experiments did not find
evidence for a state with the properties reported by SELEX,
and neither did a search at LHCb with data collected
in 2011 corresponding to an integrated luminosity of
0.65 fb−1 [49]. However, because the production environ-
ments at these experiments differ from that of SELEX,
which studied collisions of a hyperon beam on fixed
nuclear targets, these null results do not exclude the original
observations.
This Letter presents the observation of the Ξþþ

cc baryon
[50] via the decay mode Λþ

c K−πþπþ (Fig. 1), which is
expected to have a branching fraction of up to 10% [51].
The Λþ

c baryon is reconstructed in the final state pK−πþ.

FIG. 1. Example Feynman diagram contributing to the decay
Ξþþ
cc → Λþ

c K−πþπþ.

*Full author list given at the end of the article.
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found that the training obtained for 333 fs is close to
optimal (i.e., gives comparable performance to a training
optimized for the new lifetime hypothesis) even for much
shorter or longer lifetimes.
After the multivariate selection is applied, events may

still contain more than one Ξþþ
cc candidate in the signal

search region. Based on studies of simulation and the
control data sample, no peaking background arises due to
multiple candidates except for the special case in which
the candidates are formed from the same six decay products
but two of the decay products are interchanged (e.g.,
the K− particle from the Ξþþ

cc decay and the K− particle
from the Λþ

c decay). In such instances, one of the
candidates is chosen at random to be retained and all
others are discarded. In the remaining events, the fraction

that has more than one Ξþþ
cc candidate in the range

3300–3800 MeV=c2 is approximately 8%.
The selection described above is then applied to data in

the search region. Figure 2 shows the Λþ
c mass distribution,

and the Ξþþ
cc mass spectra for candidates in the mass

range 2270 < mcandðΛþ
c Þ < 2306 MeV=c2. A structure is

visible in the signal mode at a mass of approximately
3620 MeV=c2. No significant structure is visible in the WS
control sample, or for events in the Λþ

c mass sidebands. To
measure the properties of the structure, an unbinned
extended maximum likelihood fit is performed to the
invariant mass distribution in the restricted Λþ

c K−πþπþ

mass window of 3620$ 150 MeV=c2 (Fig. 3). The peak-
ing structure is empirically described by a Gaussian
function plus a modified Gaussian function with power-
law tails on both sides [70]. All peak parameters are fixed to
values obtained from simulation apart from the mass, yield,
and an overall resolution parameter. The background is
described by a second-order polynomial with parameters
free to float in the fit. The signal yield is measured to be
313$ 33, corresponding to a local statistical significance
in excess of 12σ when evaluated with a likelihood ratio test.
The fitted resolution parameter is 6.6$ 0.8 MeV=c2,
consistent with simulation. The same structure is also
observed in the Λþ

c K−πþπþ spectrum in a pp data sample
collected by LHCb at

ffiffiffi
s

p
¼ 8 TeV (see the Supplemental

Material [71] for results from the 8 TeV cross-check
sample). The local statistical significance of the peak in
the 8 TeV sample is above 7σ, and its mass is consistent
with that in the 13 TeV data sample.
Additional cross-checks are performed confirming the

robustness of the observation. The significance of the
structure in the Λþ

c K−πþπþ final state remains above
12σ when fixing the resolution parameter in the invariant
mass fit to the value obtained from simulation, changing the
threshold value for the multivariate selector, removing
events containing multiple candidates in the fitted mass
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FIG. 2. Mass spectra of (upper)Λþ
c and (lower) Ξþþ

cc candidates.
The full selection is applied, except for theΛþ

c mass requirement in
the case of the upper plot. For the Λþ

c mass distribution the (cross-
hatched) signal and (vertical line) sideband regions are indicated;
to avoid duplication, the histogram is filled only once in events that
contain more than one Ξþþ

cc candidate. In the lower plot the right-
sign (RS) signal sample Ξþþ

cc → Λþ
c K−πþπþ is shown, along with

the control samples: Λþ
c sideband (SB) Λþ

c K−πþπþ candidates
and wrong-sign (WS)Λþ

c K−πþπ− candidates, normalized to have
the same area as the RS sample in the mcandðΞþþ

cc Þ sidebands.
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c K−πþπþ candidates
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A highly significant structure is observed in the Λþ
c K−πþπþ mass spectrum, where the Λþ

c baryon is
reconstructed in the decay mode pK−πþ. The structure is consistent with originating from a weakly
decaying particle, identified as the doubly charmed baryon Ξþþ

cc . The difference between the masses of the
Ξþþ
cc and Λþ

c states is measured to be 1334.94" 0.72ðstat:Þ " 0.27ðsyst.Þ MeV=c2, and the Ξþþ
cc mass is

then determined to be 3621.40" 0.72ðstat:Þ " 0.27ðsyst.Þ " 0.14ðΛþ
c Þ MeV=c2, where the last uncer-

tainty is due to the limited knowledge of the Λþ
c mass. The state is observed in a sample of proton-proton

collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an
integrated luminosity of 1.7 fb−1, and confirmed in an additional sample of data collected at 8 TeV.

DOI: 10.1103/PhysRevLett.119.112001

The quark model [1–3] predicts the existence of multip-
lets of baryon and meson states. Those states composed of
the lightest four quarks (u, d, s, c) form SU(4) multiplets
[4]. Numerous states with charm quantum number C ¼ 0
or C ¼ 1 have been discovered, including all of the
expected qq̄ and qqq ground states [5]. Three weakly
decaying qqq states with C ¼ 2 are expected: one isospin
doublet (Ξþþ

cc ¼ ccu and Ξþ
cc ¼ ccd) and one isospin

singlet (Ωþ
cc ¼ ccs), each with spin parity JP ¼ 1=2þ.

The properties of these baryons have been calculated with
a variety of theoretical models. In most cases, the masses of
the Ξcc states are predicted to lie in the range 3500 to
3700 MeV=c2 [6–33]. The masses of the Ξþþ

cc and Ξþ
cc

states are expected to differ by only a few MeV=c2, due to
approximate isospin symmetry [34–36]. Most predictions
for the lifetime of the Ξþ

cc baryon are in the range 50 to
250 fs, and the lifetime of the Ξþþ

cc baryon is expected to be
three to four times longer at 200 to 700 fs [10,11,19,24,
37–40]. While both are expected to be produced at hadron
colliders [41–43], the longer lifetime of the Ξþþ

cc baryon
should make it significantly easier to observe than the Ξþ

cc
baryon in such experiments, due to the use of real-time
(online) event-selection requirements designed to reject
backgrounds originating from the primary interac-
tion point.
Experimentally, there is a long-standing puzzle in the Ξcc

system. Observations of the Ξþ
cc baryon at a mass of 3519"

2 MeV=c2 with signal yields of 15.9 events over 6.1" 0.5
background in the final state Λþ

c K−πþ (6.3σ significance),

and 5.62 events over 1.38" 0.13 background in the final
state pDþK− (4.8σ significance) were reported by the
SELEX Collaboration [44,45]. Their results included a
number of unexpected features, notably a short lifetime and
a large production rate relative to that of the singly charmed
Λþ
c baryon. The lifetime was stated to be shorter than 33 fs

at the 90% confidence level, and SELEX concluded
that 20% of all Λþ

c baryons observed by the experiment
originated from Ξþ

cc decays, implying a relative Ξcc
production rate several orders of magnitude larger than
theoretical expectations [11]. Searches from the FOCUS
[46], BABAR [47], and Belle [48] experiments did not find
evidence for a state with the properties reported by SELEX,
and neither did a search at LHCb with data collected
in 2011 corresponding to an integrated luminosity of
0.65 fb−1 [49]. However, because the production environ-
ments at these experiments differ from that of SELEX,
which studied collisions of a hyperon beam on fixed
nuclear targets, these null results do not exclude the original
observations.
This Letter presents the observation of the Ξþþ

cc baryon
[50] via the decay mode Λþ

c K−πþπþ (Fig. 1), which is
expected to have a branching fraction of up to 10% [51].
The Λþ

c baryon is reconstructed in the final state pK−πþ.

FIG. 1. Example Feynman diagram contributing to the decay
Ξþþ
cc → Λþ

c K−πþπþ.

*Full author list given at the end of the article.
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6.  Use the same method to predict the mass of a doubly bottom tetraquark ( ).bbūd̄

Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄ Tetraquark

Marek Karliner1,* and Jonathan L. Rosner2,†
1School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
2Enrico Fermi Institute and Department of Physics, University of Chicago, 5620 South Ellis Avenue, Chicago, Illinois 60637, USA

(Received 28 July 2017; published 15 November 2017)

Recently, the LHCb Collaboration discovered the first doubly charmed baryon Ξþþ
cc ¼ ccu at

3621.40# 0.78 MeV, very close to our theoretical prediction. We use the same methods to predict a
doubly bottom tetraquarkTðbbūd̄Þwith JP ¼ 1þ at 10 389# 12 MeV, 215MeVbelow theB−B̄&0 threshold
and 170 MeV below the threshold for decay to B−B̄0γ. The Tðbbūd̄Þ is therefore stable under strong and
electromagnetic interactions and can only decay weakly, the first exotic hadron with such a property. On the
other hand, the mass of Tðccūd̄Þwith JP ¼ 1þ is predicted to be 3882# 12 MeV, 7MeVabove theD0D&þ

threshold and 148MeVabove theD0Dþγ threshold.Tðbcūd̄Þwith JP ¼ 0þ is predicted at 7134# 13 MeV,
11 MeV below the B̄0D0 threshold. Our precision is not sufficient to determine whether bcūd̄ is actually
above or below the threshold. It could manifest itself as a narrow resonance just at threshold.

DOI: 10.1103/PhysRevLett.119.202001

Introduction.—The question whether QQq̄q̄ tetraquarks
with two heavy quarks Q and two light antiquarks q̄ are
stable or unstable against decay into two Qq̄ mesons has a
long history. It has been largely undecided, mainly due to a
lack of experimental information about the strength of the
interaction between two heavy quarks.
The very recent discovery of the doubly charmed baryon

Ξcc by the LHCb Collaboration at CERN has now provided
the crucial experimental input which allows this issue to be
finally resolved.
LHCb has observed the doubly charmed baryon Ξþþ

cc ¼
ccu with a mass of 3621.40# 0.78 MeV [1]. This value is
consistent with several predictions, including our value of
3627# 12 MeV [2,3]. (A Ξþ

cc candidate observed previ-
ously by the SELEX Collaboration at Fermilab [4] has not
been confirmed by other experiments and has a mass about
100 MeV lighter, outside the range of our prediction.)
Here we use similar methods to those in Ref. [2] and

earlier works [5] to predict the mass of the ground-state
bbūd̄ tetraquark with spin-parity JP ¼ 1þ, M½Tðbbūd̄Þ( ¼
10 389# 12 MeV.We stress that our work is the first to use
the assumption, validated by our successful prediction of the
Ξcc mass, that the binding energy of two heavy quarksQ in a
color-antitripletQQ state is half that ofQQ̄ in a color singlet.
Angular momentum and parity conservation in strong

and electromagnetic (EM) interactions forbid a state with
JP ¼ 1þ from decaying strongly or electromagnetically
into two pseudoscalars in any partial wave. Therefore,
bbūd̄ with JP ¼ 1þ cannot decay into BB. The lowest-
mass hadronic channel allowed by angular momentum and
parity is BB&, most favorably in S wave. This channel is,
however, kinematically closed, because the Tðbbūd̄Þ mass
is 215 MeV below BB& threshold at 10 604 MeV.
M½Tðbbūd̄Þ( is also 170 MeV below 2mB, the relevant
threshold for EM decay to B−B̄0γ.

The B mesons are the lightest states that carry open
bottom, so the bbūd̄ tetraquark cannot decay through
strong or EM interactions which conserve heavy flavor.
It can only decay weakly, when one of the b quarks decays
into a c quark and a virtualW−. A typical decay is therefore
ðbbūd̄Þ → B̄Dπ−ðρ−Þ, etc.
Themain challenge in the prediction of theTðbbūd̄Þmass

is the estimate of binding energy between the two b quarks
[6–8]. Table IX of Ref. [8] provides a compilation of earlier
mass estimates of various QQq̄q̄ tetraquarks. In Ref. [2]
we estimated the binding energy between two heavy quarks
Q by assuming that QQ binding is one half of the Q̄Q
binding which can be obtained from quarkonia. When
applied to the ccu baryon Ξcc this led to the prediction
MðΞccÞ ¼ 3627# 12 MeV, very close to the experimen-
tally measured ccu mass of 3621.40# 0.78 MeV.
The above relation between quark-quark and quark-

antiquark binding is exact in the one-gluon-exchange
weak-coupling limit. Its successful extension beyond
weak coupling implies that the heavy quark potential
factorizes into a color-dependent and a space-dependent
part, with the space-dependent part being the same for QQ
and Q̄Q. The relative factor 1=2 is then automatic, just
as in the weak-coupling limit, resulting from the color
algebra.
Calculation of the bbūd̄ mass.—In the present Letter

we build on the accuracy of the Ξcc mass prediction and
assume the same relation is true for bb binding energy in a
bbūd̄ tetraquark. In order to obtain a state with the lowest
possible mass, we further assume that all four quarks are in
a relative S wave and that the ū and d̄ light antiquarks bind
into a color-triplet “good” antidiquark with spin and isospin
zero. The bb diquark must then be a color antitriplet and
Fermi statistics dictates it has spin 1. The total spin and
parity are then JP ¼ 1þ.
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q = ū(p2) [�iQqe�

µ]u(p1) (49)

antiquark current QED:

j
µ
q̄ = ⌫̄(p1) [�iQqe�

µ] ⌫(p2) (50)

quark current QCD:

j
µ
q = ū(p2)

⇥
�igsT

a
ji�

µ
⇤
u(p1) (51)

antiquark current QCD:

j
µ
q̄ = ⌫̄(p1)

⇥
�igsT

a
ij�

µ
⇤
⌫(p2) (52)

quark-quark QED:
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h ~̂Sū · ~̂Sd̄i = �3

4
(59)

(60)

2 Color Factors

quark current QED:

j
µ
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h ~̂Sū · ~̂Sd̄i = �3

4
(59)

(60)

2 Color Factors

quark current QED:

j
µ
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⇥ ū(p4) [�igsT
a
lk�

⌫ ]u(p3) (77)

5

M(⌅++
cc ) = 2m(b)

c +m
(b)
u +Bcc + 4acc

"
h ~̂Sc · ~̂Sci
(m(b)

c )2

#
+ 4a0

"
2 h ~̂Sc · ~̂Sui
m

(b)
c m

(b)
u

#
(45)

= 2m(b)
c +m

(b)
u +Bcc +

acc

(m(b)
c )2

� 4a0

m
(b)
c m

(b)
u

(46)

= [2(1710.5) + 363� 129 + 14.2� 4(50)(363)/1710.5] MeV (47)

= 3627± 12 MeV (48)

2 Color Factors

quark current QED:

j
µ
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⇥ ū(p4) [�iQq0e�
⌫ ]u(p3) (58)

quark-quark QCD:

�iM = ū(p2)
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6.  Use the same method to predict the mass of a doubly bottom tetraquark ( ).bbūd̄

Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄ Tetraquark
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Recently, the LHCb Collaboration discovered the first doubly charmed baryon Ξþþ
cc ¼ ccu at

3621.40# 0.78 MeV, very close to our theoretical prediction. We use the same methods to predict a
doubly bottom tetraquarkTðbbūd̄Þwith JP ¼ 1þ at 10 389# 12 MeV, 215MeVbelow theB−B̄&0 threshold
and 170 MeV below the threshold for decay to B−B̄0γ. The Tðbbūd̄Þ is therefore stable under strong and
electromagnetic interactions and can only decay weakly, the first exotic hadron with such a property. On the
other hand, the mass of Tðccūd̄Þwith JP ¼ 1þ is predicted to be 3882# 12 MeV, 7MeVabove theD0D&þ

threshold and 148MeVabove theD0Dþγ threshold.Tðbcūd̄Þwith JP ¼ 0þ is predicted at 7134# 13 MeV,
11 MeV below the B̄0D0 threshold. Our precision is not sufficient to determine whether bcūd̄ is actually
above or below the threshold. It could manifest itself as a narrow resonance just at threshold.

DOI: 10.1103/PhysRevLett.119.202001

Introduction.—The question whether QQq̄q̄ tetraquarks
with two heavy quarks Q and two light antiquarks q̄ are
stable or unstable against decay into two Qq̄ mesons has a
long history. It has been largely undecided, mainly due to a
lack of experimental information about the strength of the
interaction between two heavy quarks.
The very recent discovery of the doubly charmed baryon

Ξcc by the LHCb Collaboration at CERN has now provided
the crucial experimental input which allows this issue to be
finally resolved.
LHCb has observed the doubly charmed baryon Ξþþ

cc ¼
ccu with a mass of 3621.40# 0.78 MeV [1]. This value is
consistent with several predictions, including our value of
3627# 12 MeV [2,3]. (A Ξþ

cc candidate observed previ-
ously by the SELEX Collaboration at Fermilab [4] has not
been confirmed by other experiments and has a mass about
100 MeV lighter, outside the range of our prediction.)
Here we use similar methods to those in Ref. [2] and

earlier works [5] to predict the mass of the ground-state
bbūd̄ tetraquark with spin-parity JP ¼ 1þ, M½Tðbbūd̄Þ( ¼
10 389# 12 MeV.We stress that our work is the first to use
the assumption, validated by our successful prediction of the
Ξcc mass, that the binding energy of two heavy quarksQ in a
color-antitripletQQ state is half that ofQQ̄ in a color singlet.
Angular momentum and parity conservation in strong

and electromagnetic (EM) interactions forbid a state with
JP ¼ 1þ from decaying strongly or electromagnetically
into two pseudoscalars in any partial wave. Therefore,
bbūd̄ with JP ¼ 1þ cannot decay into BB. The lowest-
mass hadronic channel allowed by angular momentum and
parity is BB&, most favorably in S wave. This channel is,
however, kinematically closed, because the Tðbbūd̄Þ mass
is 215 MeV below BB& threshold at 10 604 MeV.
M½Tðbbūd̄Þ( is also 170 MeV below 2mB, the relevant
threshold for EM decay to B−B̄0γ.

The B mesons are the lightest states that carry open
bottom, so the bbūd̄ tetraquark cannot decay through
strong or EM interactions which conserve heavy flavor.
It can only decay weakly, when one of the b quarks decays
into a c quark and a virtualW−. A typical decay is therefore
ðbbūd̄Þ → B̄Dπ−ðρ−Þ, etc.
Themain challenge in the prediction of theTðbbūd̄Þmass

is the estimate of binding energy between the two b quarks
[6–8]. Table IX of Ref. [8] provides a compilation of earlier
mass estimates of various QQq̄q̄ tetraquarks. In Ref. [2]
we estimated the binding energy between two heavy quarks
Q by assuming that QQ binding is one half of the Q̄Q
binding which can be obtained from quarkonia. When
applied to the ccu baryon Ξcc this led to the prediction
MðΞccÞ ¼ 3627# 12 MeV, very close to the experimen-
tally measured ccu mass of 3621.40# 0.78 MeV.
The above relation between quark-quark and quark-

antiquark binding is exact in the one-gluon-exchange
weak-coupling limit. Its successful extension beyond
weak coupling implies that the heavy quark potential
factorizes into a color-dependent and a space-dependent
part, with the space-dependent part being the same for QQ
and Q̄Q. The relative factor 1=2 is then automatic, just
as in the weak-coupling limit, resulting from the color
algebra.
Calculation of the bbūd̄ mass.—In the present Letter

we build on the accuracy of the Ξcc mass prediction and
assume the same relation is true for bb binding energy in a
bbūd̄ tetraquark. In order to obtain a state with the lowest
possible mass, we further assume that all four quarks are in
a relative S wave and that the ū and d̄ light antiquarks bind
into a color-triplet “good” antidiquark with spin and isospin
zero. The bb diquark must then be a color antitriplet and
Fermi statistics dictates it has spin 1. The total spin and
parity are then JP ¼ 1þ.
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q = ū(p2)

⇥
�igsT

a
ji�

µ
⇤
u(p1) (67)

antiquark current QCD:

j
µ
q̄ = ⌫̄(p1)

⇥
�igsT

a
ij�

µ
⇤
⌫(p2) (68)

quark-quark QED:
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h ~̂Sū · ~̂Sd̄i
(m(b)

u )2

#
(61)

= 2m(b)
c + 2m(b)

u +Bcc +
acc

(m(b)
c )2

� 3a0

(m(b)
u )2

(62)

= [2(1710.5) + 2(363)� 129 + 14.2� 3(50)] MeV (63)

M(T+
cc) = 3882± 12 MeV (64)

Sbb = 1 (65)

Sūd̄ = 0 (66)

h ~̂Sb1 · ~̂Sb2i = +
1

4
(67)
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6.  Use the same method to predict the mass of a doubly bottom tetraquark ( ).bbūd̄

Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄ Tetraquark

Marek Karliner1,* and Jonathan L. Rosner2,†
1School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
2Enrico Fermi Institute and Department of Physics, University of Chicago, 5620 South Ellis Avenue, Chicago, Illinois 60637, USA
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Recently, the LHCb Collaboration discovered the first doubly charmed baryon Ξþþ
cc ¼ ccu at

3621.40# 0.78 MeV, very close to our theoretical prediction. We use the same methods to predict a
doubly bottom tetraquarkTðbbūd̄Þwith JP ¼ 1þ at 10 389# 12 MeV, 215MeVbelow theB−B̄&0 threshold
and 170 MeV below the threshold for decay to B−B̄0γ. The Tðbbūd̄Þ is therefore stable under strong and
electromagnetic interactions and can only decay weakly, the first exotic hadron with such a property. On the
other hand, the mass of Tðccūd̄Þwith JP ¼ 1þ is predicted to be 3882# 12 MeV, 7MeVabove theD0D&þ

threshold and 148MeVabove theD0Dþγ threshold.Tðbcūd̄Þwith JP ¼ 0þ is predicted at 7134# 13 MeV,
11 MeV below the B̄0D0 threshold. Our precision is not sufficient to determine whether bcūd̄ is actually
above or below the threshold. It could manifest itself as a narrow resonance just at threshold.

DOI: 10.1103/PhysRevLett.119.202001

Introduction.—The question whether QQq̄q̄ tetraquarks
with two heavy quarks Q and two light antiquarks q̄ are
stable or unstable against decay into two Qq̄ mesons has a
long history. It has been largely undecided, mainly due to a
lack of experimental information about the strength of the
interaction between two heavy quarks.
The very recent discovery of the doubly charmed baryon

Ξcc by the LHCb Collaboration at CERN has now provided
the crucial experimental input which allows this issue to be
finally resolved.
LHCb has observed the doubly charmed baryon Ξþþ

cc ¼
ccu with a mass of 3621.40# 0.78 MeV [1]. This value is
consistent with several predictions, including our value of
3627# 12 MeV [2,3]. (A Ξþ

cc candidate observed previ-
ously by the SELEX Collaboration at Fermilab [4] has not
been confirmed by other experiments and has a mass about
100 MeV lighter, outside the range of our prediction.)
Here we use similar methods to those in Ref. [2] and

earlier works [5] to predict the mass of the ground-state
bbūd̄ tetraquark with spin-parity JP ¼ 1þ, M½Tðbbūd̄Þ( ¼
10 389# 12 MeV.We stress that our work is the first to use
the assumption, validated by our successful prediction of the
Ξcc mass, that the binding energy of two heavy quarksQ in a
color-antitripletQQ state is half that ofQQ̄ in a color singlet.
Angular momentum and parity conservation in strong

and electromagnetic (EM) interactions forbid a state with
JP ¼ 1þ from decaying strongly or electromagnetically
into two pseudoscalars in any partial wave. Therefore,
bbūd̄ with JP ¼ 1þ cannot decay into BB. The lowest-
mass hadronic channel allowed by angular momentum and
parity is BB&, most favorably in S wave. This channel is,
however, kinematically closed, because the Tðbbūd̄Þ mass
is 215 MeV below BB& threshold at 10 604 MeV.
M½Tðbbūd̄Þ( is also 170 MeV below 2mB, the relevant
threshold for EM decay to B−B̄0γ.

The B mesons are the lightest states that carry open
bottom, so the bbūd̄ tetraquark cannot decay through
strong or EM interactions which conserve heavy flavor.
It can only decay weakly, when one of the b quarks decays
into a c quark and a virtualW−. A typical decay is therefore
ðbbūd̄Þ → B̄Dπ−ðρ−Þ, etc.
Themain challenge in the prediction of theTðbbūd̄Þmass

is the estimate of binding energy between the two b quarks
[6–8]. Table IX of Ref. [8] provides a compilation of earlier
mass estimates of various QQq̄q̄ tetraquarks. In Ref. [2]
we estimated the binding energy between two heavy quarks
Q by assuming that QQ binding is one half of the Q̄Q
binding which can be obtained from quarkonia. When
applied to the ccu baryon Ξcc this led to the prediction
MðΞccÞ ¼ 3627# 12 MeV, very close to the experimen-
tally measured ccu mass of 3621.40# 0.78 MeV.
The above relation between quark-quark and quark-

antiquark binding is exact in the one-gluon-exchange
weak-coupling limit. Its successful extension beyond
weak coupling implies that the heavy quark potential
factorizes into a color-dependent and a space-dependent
part, with the space-dependent part being the same for QQ
and Q̄Q. The relative factor 1=2 is then automatic, just
as in the weak-coupling limit, resulting from the color
algebra.
Calculation of the bbūd̄ mass.—In the present Letter

we build on the accuracy of the Ξcc mass prediction and
assume the same relation is true for bb binding energy in a
bbūd̄ tetraquark. In order to obtain a state with the lowest
possible mass, we further assume that all four quarks are in
a relative S wave and that the ū and d̄ light antiquarks bind
into a color-triplet “good” antidiquark with spin and isospin
zero. The bb diquark must then be a color antitriplet and
Fermi statistics dictates it has spin 1. The total spin and
parity are then JP ¼ 1þ.
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h ~̂Sū · ~̂Sd̄i
(m(b)

u )2

#
(70)

= 2m(b)
b + 2m(b)

u +Bbb +
abb

(m(b)
b )2

� 3a0

(m(b)
u )2

(71)

= [2(1710.5) + 2(363)� 129 + 14.2� 3(50)] MeV (72)

M(T�
bb) = 3882± 12 MeV (73)

2 Color Factors

quark current QED:

j
µ
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q = ū(p2) [�iQqe�

µ]u(p1) (74)

antiquark current QED:

j
µ
q̄ = ⌫̄(p1) [�iQqe�

µ] ⌫(p2) (75)

quark current QCD:

j
µ
q = ū(p2)
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6.  Use the same method to predict the mass of a doubly bottom tetraquark ( ).bbūd̄

Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄ Tetraquark
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2Enrico Fermi Institute and Department of Physics, University of Chicago, 5620 South Ellis Avenue, Chicago, Illinois 60637, USA

(Received 28 July 2017; published 15 November 2017)

Recently, the LHCb Collaboration discovered the first doubly charmed baryon Ξþþ
cc ¼ ccu at

3621.40# 0.78 MeV, very close to our theoretical prediction. We use the same methods to predict a
doubly bottom tetraquarkTðbbūd̄Þwith JP ¼ 1þ at 10 389# 12 MeV, 215MeVbelow theB−B̄&0 threshold
and 170 MeV below the threshold for decay to B−B̄0γ. The Tðbbūd̄Þ is therefore stable under strong and
electromagnetic interactions and can only decay weakly, the first exotic hadron with such a property. On the
other hand, the mass of Tðccūd̄Þwith JP ¼ 1þ is predicted to be 3882# 12 MeV, 7MeVabove theD0D&þ

threshold and 148MeVabove theD0Dþγ threshold.Tðbcūd̄Þwith JP ¼ 0þ is predicted at 7134# 13 MeV,
11 MeV below the B̄0D0 threshold. Our precision is not sufficient to determine whether bcūd̄ is actually
above or below the threshold. It could manifest itself as a narrow resonance just at threshold.

DOI: 10.1103/PhysRevLett.119.202001

Introduction.—The question whether QQq̄q̄ tetraquarks
with two heavy quarks Q and two light antiquarks q̄ are
stable or unstable against decay into two Qq̄ mesons has a
long history. It has been largely undecided, mainly due to a
lack of experimental information about the strength of the
interaction between two heavy quarks.
The very recent discovery of the doubly charmed baryon

Ξcc by the LHCb Collaboration at CERN has now provided
the crucial experimental input which allows this issue to be
finally resolved.
LHCb has observed the doubly charmed baryon Ξþþ

cc ¼
ccu with a mass of 3621.40# 0.78 MeV [1]. This value is
consistent with several predictions, including our value of
3627# 12 MeV [2,3]. (A Ξþ

cc candidate observed previ-
ously by the SELEX Collaboration at Fermilab [4] has not
been confirmed by other experiments and has a mass about
100 MeV lighter, outside the range of our prediction.)
Here we use similar methods to those in Ref. [2] and

earlier works [5] to predict the mass of the ground-state
bbūd̄ tetraquark with spin-parity JP ¼ 1þ, M½Tðbbūd̄Þ( ¼
10 389# 12 MeV.We stress that our work is the first to use
the assumption, validated by our successful prediction of the
Ξcc mass, that the binding energy of two heavy quarksQ in a
color-antitripletQQ state is half that ofQQ̄ in a color singlet.
Angular momentum and parity conservation in strong

and electromagnetic (EM) interactions forbid a state with
JP ¼ 1þ from decaying strongly or electromagnetically
into two pseudoscalars in any partial wave. Therefore,
bbūd̄ with JP ¼ 1þ cannot decay into BB. The lowest-
mass hadronic channel allowed by angular momentum and
parity is BB&, most favorably in S wave. This channel is,
however, kinematically closed, because the Tðbbūd̄Þ mass
is 215 MeV below BB& threshold at 10 604 MeV.
M½Tðbbūd̄Þ( is also 170 MeV below 2mB, the relevant
threshold for EM decay to B−B̄0γ.

The B mesons are the lightest states that carry open
bottom, so the bbūd̄ tetraquark cannot decay through
strong or EM interactions which conserve heavy flavor.
It can only decay weakly, when one of the b quarks decays
into a c quark and a virtualW−. A typical decay is therefore
ðbbūd̄Þ → B̄Dπ−ðρ−Þ, etc.
Themain challenge in the prediction of theTðbbūd̄Þmass

is the estimate of binding energy between the two b quarks
[6–8]. Table IX of Ref. [8] provides a compilation of earlier
mass estimates of various QQq̄q̄ tetraquarks. In Ref. [2]
we estimated the binding energy between two heavy quarks
Q by assuming that QQ binding is one half of the Q̄Q
binding which can be obtained from quarkonia. When
applied to the ccu baryon Ξcc this led to the prediction
MðΞccÞ ¼ 3627# 12 MeV, very close to the experimen-
tally measured ccu mass of 3621.40# 0.78 MeV.
The above relation between quark-quark and quark-

antiquark binding is exact in the one-gluon-exchange
weak-coupling limit. Its successful extension beyond
weak coupling implies that the heavy quark potential
factorizes into a color-dependent and a space-dependent
part, with the space-dependent part being the same for QQ
and Q̄Q. The relative factor 1=2 is then automatic, just
as in the weak-coupling limit, resulting from the color
algebra.
Calculation of the bbūd̄ mass.—In the present Letter

we build on the accuracy of the Ξcc mass prediction and
assume the same relation is true for bb binding energy in a
bbūd̄ tetraquark. In order to obtain a state with the lowest
possible mass, we further assume that all four quarks are in
a relative S wave and that the ū and d̄ light antiquarks bind
into a color-triplet “good” antidiquark with spin and isospin
zero. The bb diquark must then be a color antitriplet and
Fermi statistics dictates it has spin 1. The total spin and
parity are then JP ¼ 1þ.
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h ~̂Sū · ~̂Sd̄i = �3

4
(68)

(69)

M(T�
bb) = 2m(b)

b + 2m(b)
u +Bbb + 4abb

"
h ~̂Sb1 · ~̂Sb2i
(m(b)

b )2

#
+ 4a0

"
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h ~̂Sū · ~̂Sd̄i = �3

4
(68)

(69)

M(T�
bb) = 2m(b)

b + 2m(b)
u +Bbb + 4abb

"
h ~̂Sb1 · ~̂Sb2i
(m(b)

b )2

#
+ 4a0

"
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h ~̂Sū · ~̂Sd̄i = �3

4
(68)

(69)

M(T�
bb) = 2m(b)

b + 2m(b)
u +Bbb + 4abb

"
h ~̂Sb1 · ~̂Sb2i
(m(b)

b )2

#
+ 4a0

"
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The upshot is that we are considering a configuration
very similar to a heavy-light meson Q̄q, where instead
of the heavy antiquark we have a doubly heavy color-
antitriplet diquark and instead of the quark we have a light
color-triplet antidiquark. The rest of the calculation is
straightforward and proceeds in a way entirely analogous
to Ref. [2].
The contributions to the mass of the lightest tetraquark

Tðbbūd̄Þ with two bottom quarks and JP ¼ 1þ are listed in
Table I. The notation and the numerical values of all the
parameters are the same as in Tables VI and IX of Ref. [2].
In particular, the subscripts on masses m denote flavor,
while the superscripts b indicate that these are effective
masses in baryons.
The central value of the resulting mass 10 389 MeV%

12 is 215 MeV below the BB& threshold at 10 604 MeV,
and 170 MeV below the B−B̄0γ threshold at 10 559 MeV.
ccūd̄ and bcūd̄ masses.—The calculation of the masses

of the lightest ccūd̄ and tetraquark masses proceeds
analogously to bbūd̄. In Tables II and III we provide the
corresponding contributions to the ccūd̄ and bcūd̄ masses.
The mass of ccūd̄ turns out to be 3882% 12 MeV, with

the central value only 7 MeV above the D0D&þ threshold
at 3875 MeV and 148 MeV above the D0Dþγ threshold.
Moreover, as the central value of our prediction ofMðΞþþ

cc Þ
is 6 MeV above the observed central value, if we were to
increase the cc binding energy by 6 MeV to force agree-
ment between prediction and observation, the mass ccūd̄
would be lowered to 3876 MeV, only 1 MeV above the
D0D&þ threshold. As MðD0Þ þMðD&þÞ ¼ 3875.09%
0.07 MeV while MðDþÞ þMðD&0Þ is 1.35% 0.12 MeV

higher at 3876.44% 0.10 MeV [9], there may be some
interesting violations of isospin in the hadronic decays of
such a state, in analogy with isospin violations in decays of
Xð3872Þ [10].
Unlike bbūd̄ and ccūd̄, the lowest mass bcūd̄ tetraquark

has JP ¼ 0þ, because the minimal energy bc diquark has
spin zero. The bcūd̄ mass is 7133.7% 13 MeV, with the
central value about 11 MeV below the B̄0D0 threshold at
7144.5 MeV.
The precision of our calculation is not sufficient to

determine whether the bcūd̄ tetraquark is actually above
or below the corresponding two-meson threshold. It could
manifest itself as a narrow resonance just at threshold.
Figure 1 shows the distance in MeV between the masses

of the ccūd̄, bcūd̄, and bbūd̄ tetraquarks and the corre-
sponding thresholds, D0Dþγ, B̄0D0, and B̄0B−γ, respec-
tively, plotted against the reduced mass of the doubly heavy
diquark.
The main reason bbūd̄ is deeply bound, while ccūd̄ is

above threshold and bcūd̄ is borderline below threshold,
is the big jump in the QQ binding energy as the heavy
quarks’ mass increases: 129 MeV for cc vs 281 MeV for
bb. This increase in the binding energy can be understood

TABLE I. Contributions to the mass of the lightest tetraquark
Tðbbūd̄Þ with two bottom quarks and JP ¼ 1þ.

Contribution Value (MeV)

2mb
b 10087.0

2mb
q 726.0

abb=ðmb
bÞ2 7.8

−3a=ðmb
qÞ2 −150.0

bb binding −281.4
Total 10389.4% 12

TABLE II. Contributions to the mass of the lightest tetraquark
Tðccūd̄Þ with two charmed quarks and JP ¼ 1þ.

Contribution Value (MeV)

2mb
c 3421.0

2mb
q 726.0

acc=ðmb
cÞ2 14.2

−3a=ðmb
qÞ2 −150.0

cc binding −129.0
Total 3882.2% 12

TABLE III. Contributions to the mass of the lightest tetraquark
Tðbcūd̄Þ with one bottom and one charmed quark and JP ¼ 0þ.

Contribution Value (MeV)

mb
b þmb

c 6754.0
2mb

q 726.0
−3abc=ðmb

bm
b
cÞ −25.5

−3a=ðmb
qÞ2 −150.0

bc binding −170.8
Total 7133.7% 13

FIG. 1. Distance in MeV of the ccūd̄, bcūd̄, and bbūd̄
tetraquark masses from the corresponding thresholds D0Dþγ,
B̄0D0, and B̄0B−γ, plotted against the reduced masses of the
doubly heavy diquarks μREDðQQ0Þ, Q,Q0 ¼ c, b.
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The simple quark model result is comparable to lattice QCD calculations.

Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄ Tetraquark
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Recently, the LHCb Collaboration discovered the first doubly charmed baryon Ξþþ
cc ¼ ccu at

3621.40# 0.78 MeV, very close to our theoretical prediction. We use the same methods to predict a
doubly bottom tetraquarkTðbbūd̄Þwith JP ¼ 1þ at 10 389# 12 MeV, 215MeVbelow theB−B̄&0 threshold
and 170 MeV below the threshold for decay to B−B̄0γ. The Tðbbūd̄Þ is therefore stable under strong and
electromagnetic interactions and can only decay weakly, the first exotic hadron with such a property. On the
other hand, the mass of Tðccūd̄Þwith JP ¼ 1þ is predicted to be 3882# 12 MeV, 7MeVabove theD0D&þ

threshold and 148MeVabove theD0Dþγ threshold.Tðbcūd̄Þwith JP ¼ 0þ is predicted at 7134# 13 MeV,
11 MeV below the B̄0D0 threshold. Our precision is not sufficient to determine whether bcūd̄ is actually
above or below the threshold. It could manifest itself as a narrow resonance just at threshold.
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Introduction.—The question whether QQq̄q̄ tetraquarks
with two heavy quarks Q and two light antiquarks q̄ are
stable or unstable against decay into two Qq̄ mesons has a
long history. It has been largely undecided, mainly due to a
lack of experimental information about the strength of the
interaction between two heavy quarks.
The very recent discovery of the doubly charmed baryon

Ξcc by the LHCb Collaboration at CERN has now provided
the crucial experimental input which allows this issue to be
finally resolved.
LHCb has observed the doubly charmed baryon Ξþþ

cc ¼
ccu with a mass of 3621.40# 0.78 MeV [1]. This value is
consistent with several predictions, including our value of
3627# 12 MeV [2,3]. (A Ξþ

cc candidate observed previ-
ously by the SELEX Collaboration at Fermilab [4] has not
been confirmed by other experiments and has a mass about
100 MeV lighter, outside the range of our prediction.)
Here we use similar methods to those in Ref. [2] and

earlier works [5] to predict the mass of the ground-state
bbūd̄ tetraquark with spin-parity JP ¼ 1þ, M½Tðbbūd̄Þ( ¼
10 389# 12 MeV.We stress that our work is the first to use
the assumption, validated by our successful prediction of the
Ξcc mass, that the binding energy of two heavy quarksQ in a
color-antitripletQQ state is half that ofQQ̄ in a color singlet.
Angular momentum and parity conservation in strong

and electromagnetic (EM) interactions forbid a state with
JP ¼ 1þ from decaying strongly or electromagnetically
into two pseudoscalars in any partial wave. Therefore,
bbūd̄ with JP ¼ 1þ cannot decay into BB. The lowest-
mass hadronic channel allowed by angular momentum and
parity is BB&, most favorably in S wave. This channel is,
however, kinematically closed, because the Tðbbūd̄Þ mass
is 215 MeV below BB& threshold at 10 604 MeV.
M½Tðbbūd̄Þ( is also 170 MeV below 2mB, the relevant
threshold for EM decay to B−B̄0γ.

The B mesons are the lightest states that carry open
bottom, so the bbūd̄ tetraquark cannot decay through
strong or EM interactions which conserve heavy flavor.
It can only decay weakly, when one of the b quarks decays
into a c quark and a virtualW−. A typical decay is therefore
ðbbūd̄Þ → B̄Dπ−ðρ−Þ, etc.
Themain challenge in the prediction of theTðbbūd̄Þmass

is the estimate of binding energy between the two b quarks
[6–8]. Table IX of Ref. [8] provides a compilation of earlier
mass estimates of various QQq̄q̄ tetraquarks. In Ref. [2]
we estimated the binding energy between two heavy quarks
Q by assuming that QQ binding is one half of the Q̄Q
binding which can be obtained from quarkonia. When
applied to the ccu baryon Ξcc this led to the prediction
MðΞccÞ ¼ 3627# 12 MeV, very close to the experimen-
tally measured ccu mass of 3621.40# 0.78 MeV.
The above relation between quark-quark and quark-

antiquark binding is exact in the one-gluon-exchange
weak-coupling limit. Its successful extension beyond
weak coupling implies that the heavy quark potential
factorizes into a color-dependent and a space-dependent
part, with the space-dependent part being the same for QQ
and Q̄Q. The relative factor 1=2 is then automatic, just
as in the weak-coupling limit, resulting from the color
algebra.
Calculation of the bbūd̄ mass.—In the present Letter

we build on the accuracy of the Ξcc mass prediction and
assume the same relation is true for bb binding energy in a
bbūd̄ tetraquark. In order to obtain a state with the lowest
possible mass, we further assume that all four quarks are in
a relative S wave and that the ū and d̄ light antiquarks bind
into a color-triplet “good” antidiquark with spin and isospin
zero. The bb diquark must then be a color antitriplet and
Fermi statistics dictates it has spin 1. The total spin and
parity are then JP ¼ 1þ.
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b d̄

M(⌅++
cc ) = 2m(b)

c +m
(b)
u +Bcc + 4acc

"
h ~̂Sc1 · ~̂Sc2i
(m(b)

c )2

#
+ 4a0

"
2 h ~̂Sc · ~̂Sui
m

(b)
c m

(b)
u

#
(45)

= 2m(b)
c +m

(b)
u +Bcc +

acc

(m(b)
c )2

� 4a0

m
(b)
c m

(b)
u

(46)

= [2(1710.5) + 363� 129 + 14.2� 4(50)(363)/1710.5] MeV (47)

= 3627± 12 MeV (48)

J
P =

1

2

+

(49)

Scc = 1 (50)

Su =
1

2
(51)

h ~̂Sc1 · ~̂Sc2i = +
1

4
(52)

2 h ~̂Sc · ~̂Sui = �1 (53)

(54)

J
P = 1+ (55)

Scc = 1 (56)
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h ~̂Sū · ~̂Sd̄i
(m(b)

u )2

#
(61)

= 2m(b)
c + 2m(b)

u +Bcc +
acc

(m(b)
c )2

� 3a0

(m(b)
u )2

(62)

= [2(1710.5) + 2(363)� 129 + 14.2� 3(50)] MeV (63)

M(T+
cc) = 3882± 12 MeV (64)

Sbb = 1 (65)
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Sūd̄ = 0 (66)

h ~̂Sb1 · ~̂Sb2i = +
1

4
(67)
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h ~̂Sū · ~̂Sd̄i
(m(b)

u )2

#
(70)

= 2m(b)
b + 2m(b)

u +Bbb +
abb

(m(b)
b )2

� 3a0

(m(b)
u )2

(71)

= [2(5043.5) + 2(363)� 281.4 + 7.8� 3(50)] MeV (72)

M(T�
bb) = 10389.4± 12 MeV (73)

2 Color Factors

quark current QED:

j
µ
q = ū(p2) [�iQqe�

µ]u(p1) (74)

antiquark current QED:

j
µ
q̄ = ⌫̄(p1) [�iQqe�

µ] ⌫(p2) (75)

quark current QCD:

j
µ
q = ū(p2)
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The upshot is that we are considering a configuration
very similar to a heavy-light meson Q̄q, where instead
of the heavy antiquark we have a doubly heavy color-
antitriplet diquark and instead of the quark we have a light
color-triplet antidiquark. The rest of the calculation is
straightforward and proceeds in a way entirely analogous
to Ref. [2].
The contributions to the mass of the lightest tetraquark

Tðbbūd̄Þ with two bottom quarks and JP ¼ 1þ are listed in
Table I. The notation and the numerical values of all the
parameters are the same as in Tables VI and IX of Ref. [2].
In particular, the subscripts on masses m denote flavor,
while the superscripts b indicate that these are effective
masses in baryons.
The central value of the resulting mass 10 389 MeV%

12 is 215 MeV below the BB& threshold at 10 604 MeV,
and 170 MeV below the B−B̄0γ threshold at 10 559 MeV.
ccūd̄ and bcūd̄ masses.—The calculation of the masses

of the lightest ccūd̄ and tetraquark masses proceeds
analogously to bbūd̄. In Tables II and III we provide the
corresponding contributions to the ccūd̄ and bcūd̄ masses.
The mass of ccūd̄ turns out to be 3882% 12 MeV, with

the central value only 7 MeV above the D0D&þ threshold
at 3875 MeV and 148 MeV above the D0Dþγ threshold.
Moreover, as the central value of our prediction ofMðΞþþ

cc Þ
is 6 MeV above the observed central value, if we were to
increase the cc binding energy by 6 MeV to force agree-
ment between prediction and observation, the mass ccūd̄
would be lowered to 3876 MeV, only 1 MeV above the
D0D&þ threshold. As MðD0Þ þMðD&þÞ ¼ 3875.09%
0.07 MeV while MðDþÞ þMðD&0Þ is 1.35% 0.12 MeV

higher at 3876.44% 0.10 MeV [9], there may be some
interesting violations of isospin in the hadronic decays of
such a state, in analogy with isospin violations in decays of
Xð3872Þ [10].
Unlike bbūd̄ and ccūd̄, the lowest mass bcūd̄ tetraquark

has JP ¼ 0þ, because the minimal energy bc diquark has
spin zero. The bcūd̄ mass is 7133.7% 13 MeV, with the
central value about 11 MeV below the B̄0D0 threshold at
7144.5 MeV.
The precision of our calculation is not sufficient to

determine whether the bcūd̄ tetraquark is actually above
or below the corresponding two-meson threshold. It could
manifest itself as a narrow resonance just at threshold.
Figure 1 shows the distance in MeV between the masses

of the ccūd̄, bcūd̄, and bbūd̄ tetraquarks and the corre-
sponding thresholds, D0Dþγ, B̄0D0, and B̄0B−γ, respec-
tively, plotted against the reduced mass of the doubly heavy
diquark.
The main reason bbūd̄ is deeply bound, while ccūd̄ is

above threshold and bcūd̄ is borderline below threshold,
is the big jump in the QQ binding energy as the heavy
quarks’ mass increases: 129 MeV for cc vs 281 MeV for
bb. This increase in the binding energy can be understood

TABLE I. Contributions to the mass of the lightest tetraquark
Tðbbūd̄Þ with two bottom quarks and JP ¼ 1þ.

Contribution Value (MeV)

2mb
b 10087.0

2mb
q 726.0

abb=ðmb
bÞ2 7.8

−3a=ðmb
qÞ2 −150.0

bb binding −281.4
Total 10389.4% 12

TABLE II. Contributions to the mass of the lightest tetraquark
Tðccūd̄Þ with two charmed quarks and JP ¼ 1þ.

Contribution Value (MeV)

2mb
c 3421.0

2mb
q 726.0

acc=ðmb
cÞ2 14.2

−3a=ðmb
qÞ2 −150.0

cc binding −129.0
Total 3882.2% 12

TABLE III. Contributions to the mass of the lightest tetraquark
Tðbcūd̄Þ with one bottom and one charmed quark and JP ¼ 0þ.

Contribution Value (MeV)

mb
b þmb

c 6754.0
2mb

q 726.0
−3abc=ðmb

bm
b
cÞ −25.5

−3a=ðmb
qÞ2 −150.0

bc binding −170.8
Total 7133.7% 13

FIG. 1. Distance in MeV of the ccūd̄, bcūd̄, and bbūd̄
tetraquark masses from the corresponding thresholds D0Dþγ,
B̄0D0, and B̄0B−γ, plotted against the reduced masses of the
doubly heavy diquarks μREDðQQ0Þ, Q,Q0 ¼ c, b.
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These calculations were performed at three pion masses
ranging from mπ ∼ 340–650 MeV, and the final results
were obtained after chiral extrapolation. Reference [80]
used an anisotropic Nf ¼ 2þ 1 clover action, and results
were obtained at a single lattice spacing (at ∼ 0.0035 fm
with anisotropy 3.5) and at a single pion mass
(mπ ¼ 391 MeV). For the doubly charm states, our results
are in disagreement with those from the HQET results [24].
As we showed earlier, this discrepancy is due to the
deviation of HQET relations at the charm quark mass.
Inspired by the results in the spin-1 sector, we also

explore the spin-0 tetraquark states with doubly bottom as
well as with doubly charm quarks. Here, we have computed
flavor symmetric uub̄b̄ and uuc̄c̄ states and also explored
the pion mass dependence by dialing the light quark mass.
To check the lattice spacing dependence of the observed
results, we perform the calculation on three different lattice
spacings. In addition, we have also computed the following
flavor symmetric states, namely, ssb̄b̄, ssc̄c̄, and ccb̄b̄ at
the physical strange, charm, and bottom quark masses. For
the doubly bottom state uub̄b̄, we find that the energy
splittings (ΔE0) are generally noisy and do not clearly
exhibit a trend of increase in ΔE0 as the pion mass is
lowered. Contrary to the results of its flavor antisymmetric
cousin udb̄b̄, the ground state energy of uub̄b̄ coincides
with its threshold at lower pion masses with no clear
indication of any level below the threshold. For the doubly
charm state, uuc̄c̄, the extracted energy levels clearly lie
above their respective thresholds with no discernible
dependence on pion mass, again contrary to the results
of its flavor antisymmetric cousin udc̄c̄. In performing the
continuum extrapolation, no lattice spacing dependence is
observed for the uub̄b̄ state, while the uuc̄c̄ exhibits a mild

dependence on the lattice spacing. The flavor symmetric
states ssb̄b̄, ssc̄c̄, and ccb̄b̄ exhibit similar qualitative
features in that all the energy levels are found to be above
their respective thresholds and no significant lattice spacing
dependence is observed in the continuum extrapolation.
Our final results for the spin-0 sector are shown in Table XI.
In conclusion, the states in the spin-0 sector do not indicate
energy levels below their thresholds, suggesting it is very
unlikely that there exists any doubly heavy bound tetra-
quark states with spin 0.
The availability of energy values of spin-1 tetraquark

states for a large number of light quarkmasses provide us an
opportunity to investigate the mass relations [Eq. (17)]
between different heavy flavored hadrons due to the heavy
quark symmetry, as mentioned in Ref. [24]. For this, we
redefine the relation as a ratio (R) between different hadron
masses [Eq. (18)] where a value of unity justifies the validity
of such a mass relation, and any deviation from unity
indicates the amount of breaking of the heavy quark
symmetry at a given heavy quark mass. We find that for
bottom quarks Rb ¼ 0.837ð38Þ, indicating that the bottom
quark is very close to the heavy quark limit. On the contrary,
at the charm quark mass, we find Rc ¼ 0.602ð22Þ, which
substantially deviates from the heavy quark limit. This
clearly suggests that the charm quark is not heavy enough
to impose heavy quark symmetry relations among hadron
masses such as inEq. (17); i.e., as far thosemass relations are
concerned, one needs to be careful while treating the charm
quark within HQET.
The tetraquark states studied in this work are computed

in a single volume. In order to make conclusive statements
about their scattering amplitudes and complex poles, one
needs to carry out similar studies on multiple volumes
followed by a finite volume analysis [41]. Such an analysis
will especially be useful for the states which are close to
their thresholds. However, a comprehensive finite volume
analysis for a calculation that is reported here requires
significantly large computational resources. Currently, that
is beyond the scope of this work, but we intend to pursue
such finite volume analysis in the near future. However, it is
worth noting that the finite volume corrections for many
heavy tetraquarks, particularly for which ΔE values are
large, will be substantially suppressed. This is because, as
has been pointed out before [81–83], such corrections to the
observed energy splitting are suppressed not only because
of its large value but also for the large masses of the
threshold states, which are two heavy mesons in these

FIG. 9. Comparison of global results on the spin-1 doubly
bottom and charm tetraquark states with various flavor combi-
nations. ΔE is the energy difference between the ground state and
the lowest strong decay threshold. Various flavor combinations
represented on the horizontal axis are color coded as blue, green,
red, magenta, and grey for the states udb̄b̄, usb̄b̄, ucb̄b̄, udc̄c̄,
and usc̄ c̄, respectively.

TABLE XI. Final results for the spin-0 tetraquarks.

State ΔE0 (MeV) State ΔE0 (MeV)

uub̄b̄ −5ð18Þ uuc̄c̄ 26(11)
ssb̄b̄ 3(9) ssc̄c̄ 14(4)
ccb̄b̄ 16(1)
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I. INTRODUCTION

The past decade and a half has seen a remarkable number
of discoveries in heavy hadrons. These new findings not
only include regular mesons [1–7] and baryons [8,9] but
also involve exotic hadrons like tetra- [10–12] and penta-
quarks [13], while the structures of many are still puzzling
(like many of the so-called X, Y, and Z states) [14–22].
These hadrons, in particular, the multiquark states, are
reshaping our understanding of bound states and are
providing new insights into the dynamics of strong
interactions at multiple scales. Among the most notable
multiquarks hadrons, Zbð10630Þ and Z0

bð10650Þ were
discovered first [12], followed by Zcð4430Þ [10–12] and
then Pc pentaquarks [13]. Naturally, these discoveries have

kicked off a flurry of activities in heavy hadron physics,
both theoretically and experimentally, and there is a real
prospect of discovering more exotic hadrons, particularly
with one or more bottom quark contents at various
laboratories [23–26]. The current status of these new
discoveries, particularly on exotics, is provided in various
recent review articles [18–20,27–29].
Theoretical studies of exotic hadrons are not new.

Among the exotics, perhaps tetraquarks are the most
studied states. Historically, they were introduced by Jaffe
[30] as color neutral states of diquarks and antidiquarks1 in
the context of describing light scalar mesons as tetraquarks
and later for exotic spectroscopy [31,32]. Subsequently, the
diquark picture of tetraquarks was investigated in detail
by many authors through various models [18–20,27,28].
Phenomenologically, a four-quark state can also be mod-
eled as molecules [33,34], hadroquarkonia [35,36], and*parikshit@theory.tifr.res.in

†nilmani@theory.tifr.res.in
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1A diquark can be interpreted as a compact colored object
inside a hadron and is made out of two quarks (or antiquarks) in
the 3̄ð3Þ or 6ð6̄Þ irrep of SU(3) and can have spin 0 (scalar) or spin
1 (vector). With this model, one can build rich phenomenology
for mesons, baryons, as well as multiquark states.
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quarks [13], while the structures of many are still puzzling
(like many of the so-called X, Y, and Z states) [14–22].
These hadrons, in particular, the multiquark states, are
reshaping our understanding of bound states and are
providing new insights into the dynamics of strong
interactions at multiple scales. Among the most notable
multiquarks hadrons, Zbð10630Þ and Z0

bð10650Þ were
discovered first [12], followed by Zcð4430Þ [10–12] and
then Pc pentaquarks [13]. Naturally, these discoveries have

kicked off a flurry of activities in heavy hadron physics,
both theoretically and experimentally, and there is a real
prospect of discovering more exotic hadrons, particularly
with one or more bottom quark contents at various
laboratories [23–26]. The current status of these new
discoveries, particularly on exotics, is provided in various
recent review articles [18–20,27–29].
Theoretical studies of exotic hadrons are not new.

Among the exotics, perhaps tetraquarks are the most
studied states. Historically, they were introduced by Jaffe
[30] as color neutral states of diquarks and antidiquarks1 in
the context of describing light scalar mesons as tetraquarks
and later for exotic spectroscopy [31,32]. Subsequently, the
diquark picture of tetraquarks was investigated in detail
by many authors through various models [18–20,27,28].
Phenomenologically, a four-quark state can also be mod-
eled as molecules [33,34], hadroquarkonia [35,36], and*parikshit@theory.tifr.res.in

†nilmani@theory.tifr.res.in
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1A diquark can be interpreted as a compact colored object
inside a hadron and is made out of two quarks (or antiquarks) in
the 3̄ð3Þ or 6ð6̄Þ irrep of SU(3) and can have spin 0 (scalar) or spin
1 (vector). With this model, one can build rich phenomenology
for mesons, baryons, as well as multiquark states.
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Discovery of the Doubly Charmed Ξcc Baryon Implies a Stable bbūd̄ Tetraquark
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Recently, the LHCb Collaboration discovered the first doubly charmed baryon Ξþþ
cc ¼ ccu at

3621.40# 0.78 MeV, very close to our theoretical prediction. We use the same methods to predict a
doubly bottom tetraquarkTðbbūd̄Þwith JP ¼ 1þ at 10 389# 12 MeV, 215MeVbelow theB−B̄&0 threshold
and 170 MeV below the threshold for decay to B−B̄0γ. The Tðbbūd̄Þ is therefore stable under strong and
electromagnetic interactions and can only decay weakly, the first exotic hadron with such a property. On the
other hand, the mass of Tðccūd̄Þwith JP ¼ 1þ is predicted to be 3882# 12 MeV, 7MeVabove theD0D&þ

threshold and 148MeVabove theD0Dþγ threshold.Tðbcūd̄Þwith JP ¼ 0þ is predicted at 7134# 13 MeV,
11 MeV below the B̄0D0 threshold. Our precision is not sufficient to determine whether bcūd̄ is actually
above or below the threshold. It could manifest itself as a narrow resonance just at threshold.

DOI: 10.1103/PhysRevLett.119.202001

Introduction.—The question whether QQq̄q̄ tetraquarks
with two heavy quarks Q and two light antiquarks q̄ are
stable or unstable against decay into two Qq̄ mesons has a
long history. It has been largely undecided, mainly due to a
lack of experimental information about the strength of the
interaction between two heavy quarks.
The very recent discovery of the doubly charmed baryon

Ξcc by the LHCb Collaboration at CERN has now provided
the crucial experimental input which allows this issue to be
finally resolved.
LHCb has observed the doubly charmed baryon Ξþþ

cc ¼
ccu with a mass of 3621.40# 0.78 MeV [1]. This value is
consistent with several predictions, including our value of
3627# 12 MeV [2,3]. (A Ξþ

cc candidate observed previ-
ously by the SELEX Collaboration at Fermilab [4] has not
been confirmed by other experiments and has a mass about
100 MeV lighter, outside the range of our prediction.)
Here we use similar methods to those in Ref. [2] and

earlier works [5] to predict the mass of the ground-state
bbūd̄ tetraquark with spin-parity JP ¼ 1þ, M½Tðbbūd̄Þ( ¼
10 389# 12 MeV.We stress that our work is the first to use
the assumption, validated by our successful prediction of the
Ξcc mass, that the binding energy of two heavy quarksQ in a
color-antitripletQQ state is half that ofQQ̄ in a color singlet.
Angular momentum and parity conservation in strong

and electromagnetic (EM) interactions forbid a state with
JP ¼ 1þ from decaying strongly or electromagnetically
into two pseudoscalars in any partial wave. Therefore,
bbūd̄ with JP ¼ 1þ cannot decay into BB. The lowest-
mass hadronic channel allowed by angular momentum and
parity is BB&, most favorably in S wave. This channel is,
however, kinematically closed, because the Tðbbūd̄Þ mass
is 215 MeV below BB& threshold at 10 604 MeV.
M½Tðbbūd̄Þ( is also 170 MeV below 2mB, the relevant
threshold for EM decay to B−B̄0γ.

The B mesons are the lightest states that carry open
bottom, so the bbūd̄ tetraquark cannot decay through
strong or EM interactions which conserve heavy flavor.
It can only decay weakly, when one of the b quarks decays
into a c quark and a virtualW−. A typical decay is therefore
ðbbūd̄Þ → B̄Dπ−ðρ−Þ, etc.
Themain challenge in the prediction of theTðbbūd̄Þmass

is the estimate of binding energy between the two b quarks
[6–8]. Table IX of Ref. [8] provides a compilation of earlier
mass estimates of various QQq̄q̄ tetraquarks. In Ref. [2]
we estimated the binding energy between two heavy quarks
Q by assuming that QQ binding is one half of the Q̄Q
binding which can be obtained from quarkonia. When
applied to the ccu baryon Ξcc this led to the prediction
MðΞccÞ ¼ 3627# 12 MeV, very close to the experimen-
tally measured ccu mass of 3621.40# 0.78 MeV.
The above relation between quark-quark and quark-

antiquark binding is exact in the one-gluon-exchange
weak-coupling limit. Its successful extension beyond
weak coupling implies that the heavy quark potential
factorizes into a color-dependent and a space-dependent
part, with the space-dependent part being the same for QQ
and Q̄Q. The relative factor 1=2 is then automatic, just
as in the weak-coupling limit, resulting from the color
algebra.
Calculation of the bbūd̄ mass.—In the present Letter

we build on the accuracy of the Ξcc mass prediction and
assume the same relation is true for bb binding energy in a
bbūd̄ tetraquark. In order to obtain a state with the lowest
possible mass, we further assume that all four quarks are in
a relative S wave and that the ū and d̄ light antiquarks bind
into a color-triplet “good” antidiquark with spin and isospin
zero. The bb diquark must then be a color antitriplet and
Fermi statistics dictates it has spin 1. The total spin and
parity are then JP ¼ 1þ.
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h ~̂Sū · ~̂Sd̄i = �3

4
(68)

(69)

M(T�
bb) = 2m(b)

b + 2m(b)
u +Bbb + 4abb

"
h ~̂Sb1 · ~̂Sb2i
(m(b)

b )2

#
+ 4a0

"
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h ~̂Sū · ~̂Sd̄i = �3

4
(68)

(69)

M(T�
bb) = 2m(b)

b + 2m(b)
u +Bbb + 4abb

"
h ~̂Sb1 · ~̂Sb2i
(m(b)

b )2

#
+ 4a0

"
h ~̂Sū · ~̂Sd̄i
(m(b)

u )2

#
(70)

= 2m(b)
b + 2m(b)

u +Bbb +
abb

(m(b)
b )2

� 3a0

(m(b)
u )2

(71)

= [2(1710.5) + 2(363)� 129 + 14.2� 3(50)] MeV (72)

M(T�
bb) = 3882± 12 MeV (73)

2 Color Factors

quark current QED:

j
µ
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These calculations were performed at three pion masses
ranging from mπ ∼ 340–650 MeV, and the final results
were obtained after chiral extrapolation. Reference [80]
used an anisotropic Nf ¼ 2þ 1 clover action, and results
were obtained at a single lattice spacing (at ∼ 0.0035 fm
with anisotropy 3.5) and at a single pion mass
(mπ ¼ 391 MeV). For the doubly charm states, our results
are in disagreement with those from the HQET results [24].
As we showed earlier, this discrepancy is due to the
deviation of HQET relations at the charm quark mass.
Inspired by the results in the spin-1 sector, we also

explore the spin-0 tetraquark states with doubly bottom as
well as with doubly charm quarks. Here, we have computed
flavor symmetric uub̄b̄ and uuc̄c̄ states and also explored
the pion mass dependence by dialing the light quark mass.
To check the lattice spacing dependence of the observed
results, we perform the calculation on three different lattice
spacings. In addition, we have also computed the following
flavor symmetric states, namely, ssb̄b̄, ssc̄c̄, and ccb̄b̄ at
the physical strange, charm, and bottom quark masses. For
the doubly bottom state uub̄b̄, we find that the energy
splittings (ΔE0) are generally noisy and do not clearly
exhibit a trend of increase in ΔE0 as the pion mass is
lowered. Contrary to the results of its flavor antisymmetric
cousin udb̄b̄, the ground state energy of uub̄b̄ coincides
with its threshold at lower pion masses with no clear
indication of any level below the threshold. For the doubly
charm state, uuc̄c̄, the extracted energy levels clearly lie
above their respective thresholds with no discernible
dependence on pion mass, again contrary to the results
of its flavor antisymmetric cousin udc̄c̄. In performing the
continuum extrapolation, no lattice spacing dependence is
observed for the uub̄b̄ state, while the uuc̄c̄ exhibits a mild

dependence on the lattice spacing. The flavor symmetric
states ssb̄b̄, ssc̄c̄, and ccb̄b̄ exhibit similar qualitative
features in that all the energy levels are found to be above
their respective thresholds and no significant lattice spacing
dependence is observed in the continuum extrapolation.
Our final results for the spin-0 sector are shown in Table XI.
In conclusion, the states in the spin-0 sector do not indicate
energy levels below their thresholds, suggesting it is very
unlikely that there exists any doubly heavy bound tetra-
quark states with spin 0.
The availability of energy values of spin-1 tetraquark

states for a large number of light quarkmasses provide us an
opportunity to investigate the mass relations [Eq. (17)]
between different heavy flavored hadrons due to the heavy
quark symmetry, as mentioned in Ref. [24]. For this, we
redefine the relation as a ratio (R) between different hadron
masses [Eq. (18)] where a value of unity justifies the validity
of such a mass relation, and any deviation from unity
indicates the amount of breaking of the heavy quark
symmetry at a given heavy quark mass. We find that for
bottom quarks Rb ¼ 0.837ð38Þ, indicating that the bottom
quark is very close to the heavy quark limit. On the contrary,
at the charm quark mass, we find Rc ¼ 0.602ð22Þ, which
substantially deviates from the heavy quark limit. This
clearly suggests that the charm quark is not heavy enough
to impose heavy quark symmetry relations among hadron
masses such as inEq. (17); i.e., as far thosemass relations are
concerned, one needs to be careful while treating the charm
quark within HQET.
The tetraquark states studied in this work are computed

in a single volume. In order to make conclusive statements
about their scattering amplitudes and complex poles, one
needs to carry out similar studies on multiple volumes
followed by a finite volume analysis [41]. Such an analysis
will especially be useful for the states which are close to
their thresholds. However, a comprehensive finite volume
analysis for a calculation that is reported here requires
significantly large computational resources. Currently, that
is beyond the scope of this work, but we intend to pursue
such finite volume analysis in the near future. However, it is
worth noting that the finite volume corrections for many
heavy tetraquarks, particularly for which ΔE values are
large, will be substantially suppressed. This is because, as
has been pointed out before [81–83], such corrections to the
observed energy splitting are suppressed not only because
of its large value but also for the large masses of the
threshold states, which are two heavy mesons in these

FIG. 9. Comparison of global results on the spin-1 doubly
bottom and charm tetraquark states with various flavor combi-
nations. ΔE is the energy difference between the ground state and
the lowest strong decay threshold. Various flavor combinations
represented on the horizontal axis are color coded as blue, green,
red, magenta, and grey for the states udb̄b̄, usb̄b̄, ucb̄b̄, udc̄c̄,
and usc̄ c̄, respectively.

TABLE XI. Final results for the spin-0 tetraquarks.

State ΔE0 (MeV) State ΔE0 (MeV)

uub̄b̄ −5ð18Þ uuc̄c̄ 26(11)
ssb̄b̄ 3(9) ssc̄c̄ 14(4)
ccb̄b̄ 16(1)
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We present the results of a lattice calculation of tetraquark states with quark contents q1q2Q̄Q̄; q1; q2 ⊂
u; d; s; c and Q≡ b, c in both spin-0 (J ¼ 0) and spin-1 (J ¼ 1) sectors. This calculation is performed on
three dynamical Nf ¼ 2þ 1þ 1 highly improved staggered quark ensembles at lattice spacings of about
0.12, 0.09, and 0.06 fm. We use the overlap action for light to charm quarks, while a nonrelativistic action
with nonperturbatively improved coefficients with terms up to Oðαsv4Þ is employed for the bottom quark.
While considering charm or bottom quarks as heavy, we calculate the energy levels of various four-quark
configurations with light quark masses ranging from the physical strange quark mass to that of the
corresponding physical pion mass. This enables us to explore the quark mass dependence of the extracted
four-quark energy levels over a wide range of quark masses. The results of the spin-1 states show the
presence of ground state energy levels which are below their respective thresholds for all the light flavor
combinations. Further, we identify a trend that the energy splittings, defined as the energy difference
between the ground state energy levels and their respective thresholds, increase with decreasing the light
quark masses and are maximum at the physical point for all the spin-1 states. The rate of increase is,
however, dependent on the light quark configuration of the particular spin-1 state. We also present a study
of hadron mass relations involving tetraquarks, baryons, and mesons arising in the limit of infinitely heavy
quarks and find that these relations are more compatible with the heavy quark limit in the bottom sector but
deviate substantially in the charm sector. The ground state spectra of the spin-0 tetraquark states with
various flavor combinations are seen to lie above their respective thresholds.
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I. INTRODUCTION

The past decade and a half has seen a remarkable number
of discoveries in heavy hadrons. These new findings not
only include regular mesons [1–7] and baryons [8,9] but
also involve exotic hadrons like tetra- [10–12] and penta-
quarks [13], while the structures of many are still puzzling
(like many of the so-called X, Y, and Z states) [14–22].
These hadrons, in particular, the multiquark states, are
reshaping our understanding of bound states and are
providing new insights into the dynamics of strong
interactions at multiple scales. Among the most notable
multiquarks hadrons, Zbð10630Þ and Z0

bð10650Þ were
discovered first [12], followed by Zcð4430Þ [10–12] and
then Pc pentaquarks [13]. Naturally, these discoveries have

kicked off a flurry of activities in heavy hadron physics,
both theoretically and experimentally, and there is a real
prospect of discovering more exotic hadrons, particularly
with one or more bottom quark contents at various
laboratories [23–26]. The current status of these new
discoveries, particularly on exotics, is provided in various
recent review articles [18–20,27–29].
Theoretical studies of exotic hadrons are not new.

Among the exotics, perhaps tetraquarks are the most
studied states. Historically, they were introduced by Jaffe
[30] as color neutral states of diquarks and antidiquarks1 in
the context of describing light scalar mesons as tetraquarks
and later for exotic spectroscopy [31,32]. Subsequently, the
diquark picture of tetraquarks was investigated in detail
by many authors through various models [18–20,27,28].
Phenomenologically, a four-quark state can also be mod-
eled as molecules [33,34], hadroquarkonia [35,36], and*parikshit@theory.tifr.res.in
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1A diquark can be interpreted as a compact colored object
inside a hadron and is made out of two quarks (or antiquarks) in
the 3̄ð3Þ or 6ð6̄Þ irrep of SU(3) and can have spin 0 (scalar) or spin
1 (vector). With this model, one can build rich phenomenology
for mesons, baryons, as well as multiquark states.
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three dynamical Nf ¼ 2þ 1þ 1 highly improved staggered quark ensembles at lattice spacings of about
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quark masses and are maximum at the physical point for all the spin-1 states. The rate of increase is,
however, dependent on the light quark configuration of the particular spin-1 state. We also present a study
of hadron mass relations involving tetraquarks, baryons, and mesons arising in the limit of infinitely heavy
quarks and find that these relations are more compatible with the heavy quark limit in the bottom sector but
deviate substantially in the charm sector. The ground state spectra of the spin-0 tetraquark states with
various flavor combinations are seen to lie above their respective thresholds.
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I. INTRODUCTION

The past decade and a half has seen a remarkable number
of discoveries in heavy hadrons. These new findings not
only include regular mesons [1–7] and baryons [8,9] but
also involve exotic hadrons like tetra- [10–12] and penta-
quarks [13], while the structures of many are still puzzling
(like many of the so-called X, Y, and Z states) [14–22].
These hadrons, in particular, the multiquark states, are
reshaping our understanding of bound states and are
providing new insights into the dynamics of strong
interactions at multiple scales. Among the most notable
multiquarks hadrons, Zbð10630Þ and Z0

bð10650Þ were
discovered first [12], followed by Zcð4430Þ [10–12] and
then Pc pentaquarks [13]. Naturally, these discoveries have

kicked off a flurry of activities in heavy hadron physics,
both theoretically and experimentally, and there is a real
prospect of discovering more exotic hadrons, particularly
with one or more bottom quark contents at various
laboratories [23–26]. The current status of these new
discoveries, particularly on exotics, is provided in various
recent review articles [18–20,27–29].
Theoretical studies of exotic hadrons are not new.

Among the exotics, perhaps tetraquarks are the most
studied states. Historically, they were introduced by Jaffe
[30] as color neutral states of diquarks and antidiquarks1 in
the context of describing light scalar mesons as tetraquarks
and later for exotic spectroscopy [31,32]. Subsequently, the
diquark picture of tetraquarks was investigated in detail
by many authors through various models [18–20,27,28].
Phenomenologically, a four-quark state can also be mod-
eled as molecules [33,34], hadroquarkonia [35,36], and*parikshit@theory.tifr.res.in

†nilmani@theory.tifr.res.in
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1A diquark can be interpreted as a compact colored object
inside a hadron and is made out of two quarks (or antiquarks) in
the 3̄ð3Þ or 6ð6̄Þ irrep of SU(3) and can have spin 0 (scalar) or spin
1 (vector). With this model, one can build rich phenomenology
for mesons, baryons, as well as multiquark states.
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because the changes in the kinetic energy when increasing
the back-to-back momenta are suppressed by the heavy-
meson masses. For example, on a lattice with L ¼ 6 fm, the
energy difference between the threshold and next scattering
state is only around 8 MeV. In the context of two-nucleon
systems, it has been argued that the dense spectrum can
lead to “fake plateaus” at short time separations in the
effective energies from ratios of correlation functions [91];
see Ref. [92] for a critical discussion of this issue.
Even though our work has improved upon previous

studies of the b̄b̄ud system by including nonlocal meson-
meson scattering operators at the sink, our fits still require
rather large time separations, leading to large statistical
uncertainties. As demonstrated for the case of the H
dibaryon in Ref. [68], the results can be vastly improved
by including nonlocal operators at both source and sink, and
by including additional back-to-back momenta to map out a
larger region of the spectrum. This requires more advanced
techniques [67,93] for constructing the correlation functions.
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FIG. 8. Comparison of results for the binding energy of the b̄ b̄ ud tetraquark with IðJPÞ ¼ 0ð1þÞ (black: this work, using lattice
NRQCD; blue: previous work using lattice NRQCD [40,41]; red: lattice QCD computations of static b̄ b̄ potentials and solving the
Schrödinger equation [34,35,37]; green: quark models, effective field theories, and QCD sum rules [9,11,16–26,28–30].
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We use lattice QCD to investigate the spectrum of the b̄b̄ud four-quark system with quantum numbers
IðJPÞ ¼ 0ð1þÞ. We use five different gauge-link ensembles with 2þ 1 flavors of domain-wall fermions,
including one at the physical pion mass, and treat the heavy b̄ quark within the framework of lattice
nonrelativistic QCD. Our work improves upon previous similar computations by considering in addition to
local four-quark interpolators also nonlocal two-meson interpolators and by performing a Lüscher analysis
to extrapolate our results to infinite volume. We obtain a binding energy of ð−128% 24% 10Þ MeV,
corresponding to the mass ð10476% 24% 10Þ MeV, which confirms the existence of a b̄b̄ud tetraquark
that is stable with respect to the strong and electromagnetic interactions.
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I. INTRODUCTION

Mesons, i.e., hadrons with integer spin, were first envi-
sioned by Gell-Mann and Zweig [1,2] to be built from one,
two or more quark-antiquark pairs. However, systems that
manifestly contain more than a single quark-antiquark pair
were found only relatively recently, primarily in the heavy-
quark sector [3–8]. Exotic mesons can be characterized as
having JPC quantum numbers that cannot be constructed in
the simple quark-antiquark model, or as having a manifestly
exotic quark flavor content. In this work, we consider an
example for the latter, a b̄b̄ud tetraquark.1

It can be shown that QCD-stable Q̄Q̄qq tetraquarks must
exist in the limit mQ → ∞ [9–11]. In this limit, the two
heavy antiquarks form a color-triplet object with a size of
order ðαsmQÞ−1 and a binding energy of order α2smQ due to

the attractive Coulomb potential at short distances. The
doubly-heavy Q̄Q̄qq tetraquarks then become related to
singly-heavy Qqq baryons, just like doubly-heavy Q̄Q̄q̄
baryons become related to singly-heavy Qq̄ mesons
[12–15]. The question is whether the physical bottom
quark is heavy enough for b̄b̄qq bound states to exist
below the b̄q − b̄q two-meson thresholds. Studies based on
potential models, effective field theories, and QCD sum
rules suggest that this is indeed the case [9–11,16–30].
Possible experimental search strategies for bottomness-2
tetraquarks are discussed in Refs. [31–33].
Within lattice QCD, b̄b̄qq four-quark systems were

explored for the first time using static b̄ quarks and the
Born-Oppenheimer approximation. A stable b̄b̄ud tetra-
quark with quantum numbers IðJPÞ ¼ 0ð1þÞ around
30…90 MeV below the BB& threshold as well as a
b̄b̄ud tetraquark resonance with quantum numbers IðJPÞ ¼
0ð1−Þ around 15 MeV above the BB threshold were
predicted [34–38]. Effects from the heavy-quark spin
were investigated for the stable IðJPÞ ¼ 0ð1þÞ tetraquark
by solving a coupled-channel Schrödinger equation in
Ref. [37]. Moreover, several flavor combinations were
explored and no stable b̄b̄qq tetraquarks with qq ¼ ss
and qq ¼ cc were found in this approach [39]. Recently,
the same b̄b̄qq four-quark systems have been investigated
with b̄ quarks of finite mass treated within nonrelativistic
QCD (NRQCD). A stable b̄b̄ud tetraquark with quantum
numbers IðJPÞ ¼ 0ð1þÞ was also seen in two such

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1In the literature, the term “tetraquark” is somewhat ambigu-
ous. In certain papers it exclusively refers to a diquark-anti-
diquark structure, while in other papers it is used more generally
for arbitrary bound states and resonances with a strong four-quark
component, including, e.g., mesonic molecules. Throughout this
paper we follow the latter convention. Moreover, the b̄b̄ud
system is a tetraquark in a fully rigorous sense, since it contains
four net quark flavors.
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Finding a doubly-bottom tetraquark is a challenge for experiment.
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Figure 1. Diagram for production of a B−
c meson from a double beauty hadron decay.

from (prompt) background [18, 19]. Moreover, when the B−
c → J/ψπ−, J/ψ → µ+µ−

decay chain is used there are only three final state particles to be reconstructed, and the

J/ψ → µ+µ− signal helps to suppress backgrounds, so that high efficiency can be achieved.

The branching fraction for this B−
c decay is also relatively large, typically expected to be

a few percent [20]. Its exact value is not known since the B−
c production cross-section is

unmeasured. The ratio

fc
fu

B (B−
c → J/ψπ−)

B (B− → J/ψK−)
= (0.683± 0.018± 0.009)%

has been measured by LHCb in the fiducial range pT(B) < 20GeV and 2.0 < y(B) <

4.5 [21] (units in which c = 1 are used throughout this paper). Here, fc and fu are the

fragmentation fractions for B−
c and B− mesons, respectively, while pT and y denote the

component of momentum transverse to the beam direction and the rapidity. This result and

the prediction for B (B−
c → J/ψπ−) are consistent with the expectation that fc

fu
∼ O

(
10−3

)
.

In spite of this low production rate, a yield of 3325 ± 73 B−
c → J/ψπ− decays has been

obtained in 2 fb−1 of proton-proton collision data at centre-of-mass energy
√
s = 8TeV,

recorded at LHCb [22]. This is significantly larger than the yields reconstructed in other

decay modes, and the B−
c → J/ψπ− channel will therefore be the focus of this study. The

B−
c → J/ψπ−π+π− mode [23], with a yield about half as large as that for B−

c → J/ψπ−,

may also contribute useful sensitivity to an experimental analysis.

The expected yield of displaced B−
c mesons is given by the product of the following

factors, where order-of-magnitude estimated (indicated by “∼”) or known values are given

in parentheses: the bbx hadron production cross-section (∼ 1 nb), the branching fractions

for its inclusive decay to final states containing B−
c mesons (∼ 10%) and for the subsequent

B−
c → J/ψπ− (∼ 2%) and J/ψ → µ+µ− (6%) transitions, the detection efficiency (∼ 10%)

and the integrated luminosity. Thus, around 10 displaced B−
c mesons per fb−1 may be

reconstructed. To put it another way, O(1%) of all B−
c mesons detected in experiments at

the Large Hadron Collider may originate from decays of double beauty hadrons.

The signature of displaced meson production has been used in various ways to deter-

mine heavy flavour hadron production cross-sections. For example, displaced J/ψ mesons

are commonly used as a signature of b hadron decays — all LHC experiments have ex-
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Figure 4. IP distributions obtained from simplified simulations for different bbx hadron masses
(and thus Q values) and lifetimes.

obtained for a range of relevant parameters are shown in figure 4. It can be seen that,

for bbx lifetimes above about 0.5 ps, the distribution for displaced B−
c hadrons extends to

significantly higher IP values than that for prompt production.

The shape of the IP distribution for prompt B−
c mesons is given purely by the resolu-

tion function, since the underlying true distribution is a delta function. Given the expected

signal-to-background ratio of around 1 : 100, the sensitivity of the analysis will depend crit-

ically on the detector IP resolution — it must be as precise as possible to separate prompt

and displaced production, and must be well-known to avoid potentially large systematic

uncertainties. It should be stressed that the IP distribution for prompt B−
c mesons shown

in figure 4 is based on a simple study containing several approximations, and therefore is

not expected to provide an accurate description of the real experimental situation, partic-

ularly in the tails. It will be crucial in an experimental analysis that a suitable control

mode can be used to study the resolution function. Fortunately, the IP resolution for

B−
c → J/ψπ− decays can be studied in data using the B− → J/ψK− decay as a control

sample. Contributions from non-prompt B− mesons can be reduced by requiring produc-

tion in narrow B∗∗0
s → B−K+ decays [31, 32] where the associated K+ track is required

to originate from the primary vertex. Therefore, systematic uncertainties due to the tail

of the resolution function should be controllable.

While the IP is a powerful variable that illustrates how prompt and displaced B−
c

mesons can be separated, there is also additional information that could potentially be
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Abstract: The recent discovery, by the LHCb collaboration, of the Ξ++
cc doubly charmed

baryon, has renewed interest in the spectroscopy of doubly heavy hadrons. Experimentally,

however, searches for such states appear highly challenging. The reconstructed final states

tend to involve multiple heavy flavoured (beauty or charm) hadrons, so the yield for any

exclusive decay mode will be suppressed to unobservably low levels by the product of

several branching fractions, each of which is typically 10−3–10−2. Noting that decays of

double beauty hadrons are the only possible source of B−
c mesons that are displaced from

the primary vertices of proton-proton collisions at the LHC, a more promising inclusive

search strategy is proposed.

Keywords: Spectroscopy, B physics, Hadron-Hadron scattering (experiments)
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The possible existence of doubly heavy baryons, i.e. bound states that contain two or more

beauty or charm quarks, has been predicted since the discoveries of those quarks, not

long after the postulation of the quark model. However, such states have relatively low

production cross-sections, and require sophisticated detectors to be able to distinguish their

decays from backgrounds. The first definitive observation of a doubly heavy baryon was

reported by the LHCb collaboration in 2017, with a clear signal of Ξ++
cc → Λ+

c K
−π+π+

decays obtained from analysis of a data sample of high-energy proton-proton collisions [1].

Subsequently, the Ξ+
c π

+ decay mode has also been observed [2], and the lifetime of the

Ξ++
cc state has been found to be consistent with expectation for decays mediated by the

weak interaction [3].

Open Access, c© The Authors.
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Abstract: The recent discovery, by the LHCb collaboration, of the Ξ++
cc doubly charmed

baryon, has renewed interest in the spectroscopy of doubly heavy hadrons. Experimentally,

however, searches for such states appear highly challenging. The reconstructed final states

tend to involve multiple heavy flavoured (beauty or charm) hadrons, so the yield for any

exclusive decay mode will be suppressed to unobservably low levels by the product of

several branching fractions, each of which is typically 10−3–10−2. Noting that decays of

double beauty hadrons are the only possible source of B−
c mesons that are displaced from

the primary vertices of proton-proton collisions at the LHC, a more promising inclusive

search strategy is proposed.

Keywords: Spectroscopy, B physics, Hadron-Hadron scattering (experiments)
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The possible existence of doubly heavy baryons, i.e. bound states that contain two or more

beauty or charm quarks, has been predicted since the discoveries of those quarks, not

long after the postulation of the quark model. However, such states have relatively low

production cross-sections, and require sophisticated detectors to be able to distinguish their

decays from backgrounds. The first definitive observation of a doubly heavy baryon was

reported by the LHCb collaboration in 2017, with a clear signal of Ξ++
cc → Λ+

c K
−π+π+

decays obtained from analysis of a data sample of high-energy proton-proton collisions [1].

Subsequently, the Ξ+
c π

+ decay mode has also been observed [2], and the lifetime of the

Ξ++
cc state has been found to be consistent with expectation for decays mediated by the

weak interaction [3].
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Figure 2. Illustration of the non-zero IP associated with B−
c production from weakly decaying bbx

hadrons. Additional particles produced in the bbx decay are not shown. Reconstruction of the B−
c

decay vertex position and momentum vector from the J/ψπ− final state particles alone is sufficient
to determine the IP.

ploited this approach to measure the bb̄ production rate in different collision environments.

In these analyses, the prompt and displaced J/ψ mesons are typically separated by fitting

the distribution of a pseudo-proper decay time variable,

tz =
(zJ/ψ − zPV)×MJ/ψ

pz J/ψ
,

where zJ/ψ and zPV are the respective positions of the J/ψ decay vertex and the primary

vertex, and pz J/ψ is the component of the J/ψ momentum, along the beam direction. This

approach cannot however be used to study displaced B−
c mesons, as the non-negligible B−

c

lifetime of ∼ 0.5 ps [24, 25] causes the production and decay vertices to be separated.

An alternative variable, the impact parameter (IP) can be used to identify displaced

B−
c mesons, as illustrated in figure 2. Due to the non-negligible lifetime of the bbx hadron,

the momentum vector of the produced B−
c meson will not point back directly at the primary

vertex, i.e. the IP will be non-zero. The use of the IP to separate displaced and prompt

production has previously been used to identify displaced charm hadrons produced in b

hadron decays [26–28].3 As shown in figure 3, the displaced component is clearly visible

at higher IP values, despite the relative yields of displaced and prompt D0 mesons being

approximately 1 : 20. This signal-to-background ratio is somewhat more favourable than

expected for displaced B−
c mesons, however better alignment has led to improvement of

the LHCb IP resolution since the analysis shown in figure 3 was performed, and further

improvement is expected with the upgraded vertex locator to be installed before data taking

in 2021 [19, 29].

In addition to the lifetime and momentum of the weakly decaying double beauty

hadron, the shape of the IP distribution for displaced B−
c mesons depends on the mo-

3In refs. [26–28], but not in figure 3, the large branching fraction for b → cµν semileptonic decays

is exploited and a muon is required to be associated to the charm hadron, which significantly suppresses

prompt charm. This approach would not be possible in analysis of displaced B−
c mesons, which are produced

through b → c̄ transitions.

– 4 –

Perhaps use displaced  mesons as a 
signature at the LHC (esp. LHCb):

B−
c

production cross section       (~1 nb)
  branching fraction to   (~10%)
               (~ 2%)
               (6%)
  detection efficiency          (~10%)
  integrated luminosity       ( )

———————
     10 detected displaced   
                in 1  of data

× B−
c

× ℬ(B−
c → J/ψπ−)

× ℬ(J/ψ → μ+μ−)
×
× 1 fb−1

≈ B−
c

fb−1

Rough estimate:

Tbb

B−
c

IIID.  Doubly-Bottom Tetraquark
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Finding a doubly-bottom tetraquark is a challenge for experiment.
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Figure 4. IP distributions obtained from simplified simulations for different bbx hadron masses
(and thus Q values) and lifetimes.

obtained for a range of relevant parameters are shown in figure 4. It can be seen that,

for bbx lifetimes above about 0.5 ps, the distribution for displaced B−
c hadrons extends to

significantly higher IP values than that for prompt production.

The shape of the IP distribution for prompt B−
c mesons is given purely by the resolu-

tion function, since the underlying true distribution is a delta function. Given the expected

signal-to-background ratio of around 1 : 100, the sensitivity of the analysis will depend crit-

ically on the detector IP resolution — it must be as precise as possible to separate prompt

and displaced production, and must be well-known to avoid potentially large systematic

uncertainties. It should be stressed that the IP distribution for prompt B−
c mesons shown

in figure 4 is based on a simple study containing several approximations, and therefore is

not expected to provide an accurate description of the real experimental situation, partic-

ularly in the tails. It will be crucial in an experimental analysis that a suitable control

mode can be used to study the resolution function. Fortunately, the IP resolution for

B−
c → J/ψπ− decays can be studied in data using the B− → J/ψK− decay as a control

sample. Contributions from non-prompt B− mesons can be reduced by requiring produc-

tion in narrow B∗∗0
s → B−K+ decays [31, 32] where the associated K+ track is required

to originate from the primary vertex. Therefore, systematic uncertainties due to the tail

of the resolution function should be controllable.

While the IP is a powerful variable that illustrates how prompt and displaced B−
c

mesons can be separated, there is also additional information that could potentially be

– 6 –
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tend to involve multiple heavy flavoured (beauty or charm) hadrons, so the yield for any

exclusive decay mode will be suppressed to unobservably low levels by the product of

several branching fractions, each of which is typically 10−3–10−2. Noting that decays of
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the primary vertices of proton-proton collisions at the LHC, a more promising inclusive
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The possible existence of doubly heavy baryons, i.e. bound states that contain two or more

beauty or charm quarks, has been predicted since the discoveries of those quarks, not

long after the postulation of the quark model. However, such states have relatively low

production cross-sections, and require sophisticated detectors to be able to distinguish their

decays from backgrounds. The first definitive observation of a doubly heavy baryon was

reported by the LHCb collaboration in 2017, with a clear signal of Ξ++
cc → Λ+

c K
−π+π+

decays obtained from analysis of a data sample of high-energy proton-proton collisions [1].

Subsequently, the Ξ+
c π

+ decay mode has also been observed [2], and the lifetime of the

Ξ++
cc state has been found to be consistent with expectation for decays mediated by the

weak interaction [3].
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Abstract: The recent discovery, by the LHCb collaboration, of the Ξ++
cc doubly charmed

baryon, has renewed interest in the spectroscopy of doubly heavy hadrons. Experimentally,

however, searches for such states appear highly challenging. The reconstructed final states

tend to involve multiple heavy flavoured (beauty or charm) hadrons, so the yield for any

exclusive decay mode will be suppressed to unobservably low levels by the product of

several branching fractions, each of which is typically 10−3–10−2. Noting that decays of

double beauty hadrons are the only possible source of B−
c mesons that are displaced from

the primary vertices of proton-proton collisions at the LHC, a more promising inclusive

search strategy is proposed.
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The possible existence of doubly heavy baryons, i.e. bound states that contain two or more

beauty or charm quarks, has been predicted since the discoveries of those quarks, not

long after the postulation of the quark model. However, such states have relatively low

production cross-sections, and require sophisticated detectors to be able to distinguish their

decays from backgrounds. The first definitive observation of a doubly heavy baryon was

reported by the LHCb collaboration in 2017, with a clear signal of Ξ++
cc → Λ+

c K
−π+π+

decays obtained from analysis of a data sample of high-energy proton-proton collisions [1].

Subsequently, the Ξ+
c π

+ decay mode has also been observed [2], and the lifetime of the

Ξ++
cc state has been found to be consistent with expectation for decays mediated by the

weak interaction [3].
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Perhaps use displaced  mesons as a 
signature at the LHC (esp. LHCb):

B−
c

Rough estimate:
production cross section       (~1 nb)

  branching fraction to   (~10%)
               (~ 2%)
               (6%)
  detection efficiency          (~10%)
  integrated luminosity       ( )

———————
     10 detected displaced   
                in 1  of data

× B−
c

× ℬ(B−
c → J/ψπ−)

× ℬ(J/ψ → μ+μ−)
×
× 1 fb−1

≈ B−
c

fb−1
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LECTURE III.  The Quark Model

In the quark model, describe hadrons as 
quarks and antiquarks bound by 
potentials (“QCD-inspired”).

Potential models can describe the  
spectrum of mesons and their radiative 
transitions.

The strength of the potential is given 
by QCD color factors.

A stable doubly-bottom tetraquark appears  
to be a solid prediction of both potential  
models and lattice QCD.

Finding the doubly-bottom tetraquark 
experimentally appears difficult.

Prologue:  Definitions and Philosophy

I.  A Field Guide to Meson Families

II.  Meson Quantum Numbers

III.  The Quark Model

IV.  Exotic Mesons

V.  Current and Future Experiments


