

Andrea Signori

University of Pavia and Jefferson Lab

Transverse momentum imaging Lecture 3

Hampton University Graduate School (e-HUGS) 2021

June 9, 2021

Recap++ of lectures 1, 2

How should we "use" QCD ?

Expansion of observable in powers of the coupling constant α :

$${\cal O}(Q)\,\sim\,{\cal O}^{(0)}\,+\,lpha_s^1(Q)\,{\cal O}^{(1)}\,+\,lpha_s^2(Q)\,{\cal O}^{(2)}\,+\,lpha_s^3(Q)\,{\cal O}^{(3)}\,\dots\,\,=\,??$$

High energy \rightarrow convergence \rightarrow perturbative QCD

Low energy (hadronic scales) \rightarrow non-perturbative QCD

need alternative techniques

The hadron structure landscape

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

Transverse momentum imaging

Parton distribution functions (PDFs)

"Maps" of hadron structure in momentum space

 $f_1(x)$

1D structure in momentum space

 $f_1ig(x,k_T^2ig)$

3D structure in momentum space

Deep-inelastic scattering

 $l(\ell)\,+\,N(P)\,
ightarrow\,l'(\ell')\,+\,X(P_X)$

Polarized case - spin 1/2

 $W^{\mu
u}(q,P,S) \, \sim \, - g_{\perp}^{\mu
u} \, F_{UU,T} \, + \, {\hat t}^{\,\mu} {\hat t}^{\,
u} \, F_{UU,L}$

Two additional structure functions for the nucleon:

longitudinal and **transverse** target polarization \rightarrow related to "standard" g1 and g2 functions

Transverse beam polarization is proportional to electron mass and thus suppressed

Partonic interpretation

$$egin{aligned} 2MW_{\mu
u}(q,P,S) \ &= \ rac{1}{2\pi}\int d^4\xi \,\, e^{i\,q\cdot\xi}\left\langle PS
ight| \left[J^\dagger_\mu(x),\,J_
u(0)
ight] \left| PS
ight
angle \ &J_\mu(\xi) \ &= \ : \ \overline{\psi}(\xi)\,Q\,\gamma_\mu\,\,\psi(\xi): \end{aligned}$$

quark-antiquark

$$2MW^{\mu
u}(q,P,S) ~=~ \sum_q ~e_q^2 ~rac{1}{2} \, {
m Tr} \left[\Phi(x,S) \, \gamma^\mu \, \gamma^+ \, \gamma^
u
ight]$$

φ(x,S) : "collinear" quark correlator

 $x_B \simeq x \, \equiv \, k^+/P^+ ig|
ightarrow$ measure collinear parton dynamics

The quark transverse momentum is integrated out in DIS

Collinear parton distribution functions $\Phi_{ij}(k, P, S)$: non-perturbative hadron structure matrix P, SP, S $\Phi(x,S) \,= {1\over 2} f_1(x) p_{+} +$ \rightarrow unpolarized PDF $\frac{1}{2}g_1(x)S_L\gamma_5/\!\!\!/_++$ \rightarrow longitudinally polarized PDF (helicity) "Leading twist" approximation for spin 1/2 $\frac{1}{2} h_1(x) i \sigma_{\mu\nu} \gamma_5 n_+^{\mu} S_T^{\nu} \longrightarrow \text{transversely polarized PDF}$ (transversity)

DIS: structure functions and PDFs

DIS on a spin ½ hadron: structure functions at leading order in perturbation theory (at higher orders: convolution with perturbative coefficients)

Higher twist PDFs

Twist t (operational definition): $\left(\frac{M}{P^+}\right)^{t-2}$

For more details on the definition(s) of twist, see Jaffe's "Erice" lecture notes

Semi-Inclusive DIS

 $\ell(l) + N(P) \to \ell(l') + h(P_h) + X,$

SIDIS cross section (polarized nucleon - spin 1/2)

$$\frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} = \frac{\alpha^{2}}{x\,y\,Q^{2}}\,\frac{y^{2}}{2\,(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\phi_{h}} + \varepsilon\,\cos(2\phi_{h})\,F_{UU}^{\cos\,2\phi_{h}} \\
+ \lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}} + \varepsilon\,\sin(2\phi_{h})\,F_{UL}^{\sin\,2\phi_{h}}\right] \\
+ S_{L}\,\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\phi_{h}}\right] \\
+ S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon\,F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\,\sin(\phi_{h} + \phi_{S})\,F_{UT}^{\sin(\phi_{h} + \phi_{S})}\right] \\
+ \varepsilon\,\sin(3\phi_{h} - \phi_{S})\,F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}} \\
+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h} - \phi_{S})\,F_{UT}^{\sin(2\phi_{h} - \phi_{S})}\right] + S_{T}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})} \\
+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos\phi_{S}} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_{h} - \phi_{S})\,F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\right]\right\}$$

For more details see https://inspirehep.net/literature/732275

Partonic interpretation

+ higher twist (suppressed)

$$2MW^{\mu\nu}(q, P, S, P_h) = \frac{2z_h}{x_B} \mathcal{C}\Big[\mathrm{Tr}(\Phi(x_B, \boldsymbol{p}_T, S) \gamma^{\mu} \Delta(z_h, \boldsymbol{k}_T) \gamma^{\nu})\Big]$$

$$\mathcal{C}[wfD] = \sum x e_a^2 \int d^2 \mathbf{p}_T \, d^2 \mathbf{k}_T \, \delta^{(2)} \left(\mathbf{p}_T - \mathbf{k}_T - \mathbf{P}_{h\perp} / z \right) w(\mathbf{p}_T, \mathbf{k}_T) \, f^a(x, p_T^2) \, D^a(z, k_T^2)$$

TMD PDFs and TMD FFs

8 TMD PDFs at leading twist

8 TMD FFs at leading twist

SIDIS: structure functions and TMDs

Etc. ...

SIDIS on a spin ½ hadron: structure functions at leading order in perturbation theory (at higher orders: convolution with perturbative coefficients)

Higher twist TMDs

Sivers effect: correlation between transverse spin and momentum

$$\Phi(x, \mathbf{k}_{T}) = \frac{1}{2} \Biggl\{ f_{1}(x, \mathbf{k}_{T}) \not{n}_{+} + \underbrace{f_{1T}^{\perp}(x, \mathbf{k}_{T})}_{M} \underbrace{\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}n_{+}^{\nu} k_{T}^{\rho} S_{T}^{\sigma}}_{M} + g_{1s}(x, \mathbf{k}_{T}) \gamma_{5} \not{n}_{+} \\ \text{Twist 2} + h_{1T}(x, \mathbf{k}_{T}) \frac{\gamma_{5} [\not{s}_{T}, \not{n}_{+}]}{2} + h_{1s}^{\perp}(x, \mathbf{k}_{T}) \frac{\gamma_{5} [\not{k}_{T}, \not{n}_{+}]}{2M} + h_{1}^{\perp}(x, \mathbf{k}_{T}) \frac{i[\not{k}_{T}, \not{n}_{+}]}{2M} \Biggr\} \\ + \frac{M}{2P^{+}} \Biggl\{ e(x, \mathbf{k}_{T}) + f^{\perp}(x, \mathbf{k}_{T}) \frac{\not{k}_{T}}{M} - f_{T}(x, \mathbf{k}_{T}) e_{T}^{\rho\sigma} \gamma_{\rho} S_{T\sigma} \\ -\lambda f_{L}^{\perp}(x, \mathbf{k}_{T}) \frac{e_{T}^{\rho\sigma} \gamma_{\rho} k_{T\sigma}}{M} - e_{s}(x, \mathbf{k}_{T}) i\gamma_{5} \\ + g_{T}'(x, \mathbf{k}_{T}) \gamma_{5} \not{s}_{T} + g_{s}^{\perp}(x, \mathbf{k}_{T}) \frac{\gamma_{5} \not{k}_{T}}{M} + h_{T}^{\perp}(x, \mathbf{k}_{T}) \frac{\gamma_{5} [\not{s}_{T}, \not{k}_{T}]}{2M} \\ + h_{s}(x, \mathbf{k}_{T}) \frac{\gamma_{5} [\not{n}_{+}, \not{n}_{-}]}{2} + h(x, \mathbf{k}_{T}) \frac{i[\not{n}_{+}, \not{n}_{-}]}{2} \Biggr\}.$$
(3.44)

Formally derived within the "diagrammatic approach" :

no interpretation in TMD factorization (yet)

Plan of these lectures

- 1. DIS and partons
- 2. From DIS to SIDIS
- 3. Symmetries and universality
- 4. Factorization, evolution, matching
- 5. Phenomenology

3.1 Symmetries

Gauge symmetry

Quark correlator

$$\Phi_{ij}(k,P,S) = \int rac{d^4\xi}{\left(2\pi
ight)^4} \, e^{i\,k\cdot\,\xi} ig\langle PS \Big|\, \overline{\psi}_j(0)\,\psi_i(\xi) \Big| PS
angle$$

Quark correlator

$$\Phi_{ij}(k,P,S) = \int rac{d^4 \xi}{\left(2\pi
ight)^4} \, e^{i\,k\,\cdot\,\xi} \, \langle PS \Big| \overline{oldsymbol{\psi}_j(0)\,oldsymbol{\psi}_i(\xi)} \Big| PS
angle$$

 ${\cal U}(x)=\,e^{i\,lpha^a(x)\,t^a}$

 $\overline{\psi}_j(0)\,\psi_i(\xi)\,
ightarrow\,\overline{\psi}_j(0)\,\mathcal{U}^\dagger(0)\,\mathcal{U}(\xi)\,\psi_i(\xi)$

We need to "correct" the operator to make it gauge invariant

Close the non locality with a "gauge link" (or Wilson line)

Geometric interpretation

 $D_{\dot{c}} \ \psi(x(t)) = 0 \ , \ t \in I \subset \mathbb{R}$ "Parallel transport" to close the non-locality $D_{\mu} = \partial_{\mu} - ig_s T^a A^a_{\mu}$

Gauge invariant quark correlator

$$\Phi_{ij}(k, P, S) = \int \frac{d^4\xi}{(2\pi)^4} e^{i k \cdot \xi} \langle PS | \overline{\psi_j(0) U(0, \xi) \psi_i(\xi)} | PS \rangle$$

$$P, S$$
GAUGE INVARIANT!

 ${\cal U}(x)=\,e^{i\,lpha^a(x)\,t^a}$

The Wilson line "bridges" the non-locality and makes the operator gauge invariant

 $U(0,\xi)\,
ightarrow\,\mathcal{U}(0)\,U(0,\xi)\,\mathcal{U}^{\dagger}(\xi)$

 $\overline{\psi}_j(0)\,U(0,\xi)\,\psi_i(\xi)\,
ightarrow\,\overline{\psi}_j(0)\,\mathcal{U}^\dagger(0)\,\mathcal{U}(0)\,U(0,\xi)\,\mathcal{U}^\dagger(\xi)\,\mathcal{U}(\xi)\,\psi_i(\xi)\,=\,\overline{\psi}_j(0)\,U(0,\xi)\,\psi_i(\xi)$

Eventually the correlator and the (TMD) PDFs **depend on the** gauge link and its path in spacetime

Discrete symmetries: parity

$$a^{\mu} = \left(a^{0},\,ec{a}
ight), \qquad ilde{a}^{\mu} = \left(a^{0},\,\,-ec{a}
ight) \qquad \leftarrow \,$$
 let's consider this definition

$$\begin{split} z^{\mu} &\longrightarrow \tilde{z}^{\mu} \\ P^{\mu} &\longrightarrow \tilde{P}^{\mu} \\ S^{\mu} &\longrightarrow S^{\mu} \equiv -\tilde{S}^{\mu} \quad (\text{since } S^{\mu} = (0, \vec{S}) \text{ by definition} \\ n_{\pm} &\longrightarrow n_{\mp} \\ \psi(\xi) &\longrightarrow \mathscr{P} \, \psi(\xi) \, \mathscr{P}^{\dagger} = \Lambda_{\mathscr{P}} \, \psi(\tilde{\xi}) \,, \quad \Lambda_{\mathscr{P}} = \gamma^{0} \\ \gamma^{\mu} &\longrightarrow \mathscr{P} \, \gamma^{\mu} \, \mathscr{P}^{\dagger} = \Lambda_{\mathscr{P}} \, \gamma^{\mu} \, \Lambda_{\mathscr{P}}^{\dagger} \end{split}$$

The action on the quark field is the one that leaves the QCD lagrangian invariant under parity transformation (symmetry)

Discrete symmetries: time reversal

$$a^{\mu} = \left(a^{0},\,ec{a}
ight), \qquad ilde{a}^{\mu} = \left(a^{0},\,\,-ec{a}
ight) \qquad \leftarrow ext{ let's consider this definition}$$

$$\begin{split} z^{\mu} &\longrightarrow -\tilde{z}^{\mu} \\ P^{\mu} &\longrightarrow \tilde{P}^{\mu} \\ S^{\mu} &\longrightarrow \tilde{S}^{\mu} \\ n_{\pm} &\longrightarrow -n_{\mp} \\ \psi(\xi) &\longrightarrow \mathscr{T} \psi(\xi) \mathscr{T}^{\dagger} = \Lambda_{\mathscr{T}} \psi(-\tilde{\xi}) \,, \quad \Lambda_{\mathscr{T}} = -i\gamma_5 C = i\gamma^1 \gamma^3 \\ \gamma^{\mu} &\longrightarrow \mathscr{T} \gamma^{\mu} \mathscr{T}^{\dagger} = \Lambda_{\mathscr{T}} \gamma^{\mu} \Lambda_{\mathscr{T}}^{\dagger} = \gamma_{\mu}^* \end{split}$$

The action on the quark field is the one that leaves the QCD lagrangian invariant under time reversal transformation (symmetry)

3.2 Universality?

Geometric structure

$$\Phi(k,P) = F.T.\langle P|\overline{\psi_j}(0) \ U \ \psi_i(\xi)|P\rangle \longrightarrow f_1^{a \ [U]}(x,k_T^2) \ \not\!\!\!P + \cdots$$

Distributions defined with *U* gauge link:

$$f_{1}^{\left[U^{-}
ight] }\left(x,k_{T}^{2}
ight)$$

Distributions defined with **U**⁺ gauge link:

$$f_{1}^{\left[U^{+}
ight] }\left(x,k_{T}^{2}
ight)$$

Gauge links for TMD PDFs

$$\Phi_{ij}^{[U]}(x, \mathbf{p}_{T}, S) = \int dp^{+} dp^{-} \,\delta(p^{+} - xP^{+}) \Phi^{[U]}(p, P, S) =$$

$$= \int \frac{d\xi^{-} d^{2}\xi_{T}}{2\pi} e^{i p \cdot \xi} \langle PS | \overline{\psi}_{j}(0) U(0, \xi) \psi_{i}(\xi) | PS \rangle_{\xi^{+} = 0}$$

$$T$$

$$\xi_{T}$$

$$\xi_{T}$$

$$\xi_{T}$$

$$\xi_{T}$$

$$\xi_{T}$$

 $U^{[+]}$ Future pointing (SIDIS)

 $U^{[-]}$ Past pointing (Drell-Yan)

T 1

Process dependence

The hard process determines the path of the link U, and the **distributions are process dependent**.

What happens to the universal concept of hadron structure?

Process dependence

The interplay between **time reversal** and **gauge symmetry** generates **relations** between the two configurations:

$$f_1^{a\ [+]}(x,k_T^2) = f_1^{a\ [-]}(x,k_T^2)$$

striking consequence of the symmetries of QCD

$$f_{1T}^{a\perp \ [+]}(x,k_T^2) = -f_{1T}^{a\perp \ [-]}(x,k_T^2)$$

T-odd distribution

Sign-change relation for the Sivers function : not yet confirmed experimentally

Implications of discrete symmetries

$$U_{\pm}(a,b)^{\dagger} = U_{\pm}(b,a)$$
$$\mathscr{P}U_{\pm}(a,b)\mathscr{P}^{\dagger} = U_{\pm}(\tilde{a},\tilde{b})$$
$$\mathscr{T}U_{\pm}(a,b)\mathscr{T}^{\dagger} = U_{\mp}(-\tilde{a},-\tilde{b})$$

We are going to **derive** these properties (together with the **sign change** of the T-odd Sivers function) during the **recitation sessions**

Hermiticity:
$$\begin{split} \Phi^{[\pm]\dagger}(k;P,S) &= \gamma^0 \Phi^{[\pm]}(k;P,S)\gamma^0 \\ \text{Parity:} \quad \Phi^{[\pm]}(k;P,S) &= \gamma^0 \Phi^{[\pm]}(\tilde{k};\tilde{P},-\tilde{S})\gamma^0 \\ \text{Time reversal:} \quad \Phi^{[\pm]*}(k;P,S) &= i\gamma^1\gamma^3 \Phi^{[\mp]}(\tilde{k};\tilde{P},\tilde{S})i\gamma^1\gamma^3 \end{split}$$

Gauge links for gluon TMDs (more complicated)

 $F^{\mu
u}(0)\,U(0,\xi)\,F^{
ho\sigma}(\xi)\,U'(\xi,\,0)$

← more complicated operator with two gauge links

The process dependence for these TMDs amounts to more complicated relations than a minus sign (but still calculable!)

For more details see <u>https://inspirehep.net/literature/1391461</u>

Gauge links for collinear PDFs (simpler)

In the collinear limit the two gauge links reduce to the same object